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Abstract—Deep learning (DL) thrives on the availability of
large numbers of high quality images with reliable labels. Due
to the large size of whole slide images in digital pathology,
patches of manageable size are often mined for use in DL models.
These patches are often variable in quality, weakly supervised,
individually less informative, and noisily labelled. To improve
classification accuracy even with these noisy input and labels in
histopathology, we propose a novel method for robust feature
generation using an adversarial autoencoder (AAE) . We utilize
the likelihood of the features in the latent space of AAE as a
criterion to weigh the training samples. We propose different
weighing schemes for our framework and test our methods on two
publicly available histopathology datasets. We observe consistent
improvement in AUC scores using our methods, and conclude
that robust supervision strategies should be further explored for
computational pathology.

Index Terms—Deep learning, Histopathology, Robust-
Supervision , Adversarial Autoencoder, Noisy label Classification

I. INTRODUCTION

Supervised deep learning (DL) models have consistently
shown promising results for automated image analysis in
medical image analysis over the last eight years [1]–[3].
However, the success of DL models depends on the availability
of large datasets of high quality and correctly labelled images
for training. When the quality of the training images or the
accuracy of their labels degrade, the accuracy of the DL mod-
els trained using them reduces drastically [4]. Consequently,
for automated medical image analysis in general, and compu-
tational pathology in particular, medical experts on a research
team need to carefully label, annotate, and curate whole slide
images (WSIs) to prepare training and testing datasets. This
process often involves precise annotations of regions of interest
(ROIs) so that high quality and homogeneous patches (sub-
images) of anatomical structures can be mined. These patches
then inherit the same label for as the ROI from which these
are mined. This data preparation process is time-consuming
and expensive.

On the other hand, weakly supervised labels for WSIs (or
large images, in general) are much easier to obtain by simply
mining their associated electronic medical records (EMRs)
for overall diagnosis. Such weak supervision disregards the
heterogeneity in the quality and anatomical content of patches
mined from a single slide. For example, image quality can
vary with tissue preparation, staining, and slide preparation
methods [5], as shown in Figure 1. Additionally, intra-tumoral
heterogeneity is a natural phenomenon. For example, tumoral
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Fig. 1: Diversity in the quality of histopathology images:
(a) Venetian blinds artifact due to improper cut, (b) tissue
degradation due to improper fixation, and (c) over-staining of
eosin dye.

and benign structures occur side by side and there is spatial
variations in disease grade or mutational landscape often in
a single slide. Spatial heterogeneity in anatomy and quality
combined with the gigapixel size of WSIs means that weakly
supervised label propagation from the WSI to ts patches
leads to mislabeling of a certain unknown proportion of the
individual patches.

Although weakly supervised learning techniques such as
multiple instance learning (MIL) try to address these issues
[6], the expressiveness of the generated features are sometimes
not strong [7] from the classification perspective as these
methods extracts aggregate bag level features consisting of
multiple instances. Such bag formations from several instances
can also reduce the number of training points available for
supervision.

In this paper, we address the problem of learning robust
models for image classification in the face of label noise
and weak supervision. We use adversarial autoencoders to get
sample-wise weights for each training image. We assume that
the samples that can deteriorate the model training will fall into
the lesser likelihood regions of the class-specific distribution
priors. This assumption eliminates the need for additional
optimization steps to calculate the sample-wise weights. We
also explore different schemes that can be used to weigh
variants of cross entropy loss function for robust supervision.

II. RELATED WORK

Previous attempts to prevent overfitting on noisy outliers
includes curriculum learning, self-paced learning, and robust
loss functions. In curriculum learning the model is trained
gradually using easier samples first, similar to how human
are taught [8]. Unsupervised measures, such as entropy of
classification output, are used to calculate the hardness of the



training samples. Self-paced learning schemes incorporate la-
bel information by including the loss of a sample as a measure
of hardness [9]. These two ideas have been extended in self-
paced curriculum learning [10], self-paced boosting [11] and
diversity-based self-paced learning [12]. Meta-learning based
sample weighting has also been explored [13]. Loss functions
that are not over-eager to fit (have high gradient) on the outliers
have been demonstrated to be robust to sample noise, such as
the L1 loss [14] and the generalized cross-entropy loss [15].

Adversarial autoencoders (AAE), which we use in this work,
is an extension of regular autoencoder by inducing a prior
distribution in the bottleneck layer [16]. Sampling from the
prior distribution leads to a generative model that can be used
for feature extraction [17] and anomaly detection [18].

Robust learning for histopathology image classification has
been explored only in a few works. the importance of robust
training schemes are explored in. A novel loss function and
graph-based ensemble boosters to enhance the strength of
training samples have been proposed [19]. Self-similarity
between multiple patches has also been used to counter label
noise [20].

III. METHODOLOGY

Fig. 2: Adversarial auto-encoder based architecture used for
robust classification.

Our proposed robust supervision technique falls in the class
of sample weighting schemes. Unlike other techniques that
involve additional optimization steps or predefined curricula,
we utilize the likelihood of the features of a sample in
the latent space of AAE to derive its dynamic weight. We
hypothesized that the less informative or the noisy samples
will fall into the low likelihood regions of the regularized latent
space.

As shown in figure 2, our model has an encoder block that
acts as a feature generator for the task-specific classifier as
well as for the AAE. The adversarial training for the generated
features in the d-dimensional (d=32 in our experiments) latent
space is performed with the aid of the discriminator block.
The discriminator compares the features generated by the
encoder with a random vector sampled from its corresponding
class specific prior distribution, which we assume to be a

d-dimensional Gaussian distribution. Since the task-specific
classifier is also needs to be optimized, the encoder block in
this adversarial task has to generate samples that are optimized
both for the classifier as well as to fool the discriminator. Here
the role of decoder block in our architecture is to ensure that
all images belonging to a particular class are pulled towards a
mean feature vector of its Gaussian prior. During the training
phase, feature generator and discriminator will perform the
following min-max game to generate the samples:

argmax
Disc

argmin
Enc,Dec,Cls

[C(X,LX) + λ1R(X)− λ2D(X,P )]

where C is the classification loss, R is the reconstruction loss,
and D is the discriminator loss. These losses are sample-wise
weighted cross-entropy, mean square error, and cross entropy
respectively in our scheme. Further, X is a training sample and
LX is its label, and P is a sample from the prior distribution.
Hyperparameters λ1 and λ2 were decided based on validation.

When the discriminator reports low confidence in distin-
guishing a real Gaussian sample against the feature vector, the
adversarial training is declared successful. Training the clas-
sifier separately on top of a well-trained AAE generator gave
poor classifier performance because such a feature generator
was agnostic to the classification task a priori.

We explored the use of following schemes for sample-wise
weighting in the loss C to train the adversarial autoencoder
based classifier (AAEC):

• Binary weighting (BW): The sample’s class-specific
likelihood is compared to a global threshold, which is
a tunable hyperparameter, to decide on its inclusion or
exclusion (binary weight).

• Binary normalized weighting (BNW): Binary weight-
ing is computed separately within each training mini-
batch by normalizing the likelihood within the batch and
comparing that to a threshold.

• Normalised weighting (NW): Continupis weights are by
normalizing the likelihood within each batch.

The binary weighting schemes described above are similar
to curriculum and self paced learning frameworks that allows
only easy samples to appear in the training phase based
on the age (state of learning iterations) of the model. On
the other hand, the NW scheme ensures that all samples
are represented in training, albeit with different weights. We
further extended BW and BNW schemes, choosing the best
of the models as the initial weights and continue training
on these without any explicit weighting. We call these set
of schemes that continue their training from BW and BNW
without any weights as Binary Weighting-No Weighting
(BWNW) scheme and Binary Normalised Weighting-No
Weighting (BNWNW) scheme respectively.

IV. EXPERIMENTS

We used a single model architecture for an experiment
where we artificially added label noise, and another where
we worked with an unknown level of noise.



Fig. 3: Patch extraction from DCIS region can result in noisy
samples (red box) where the basement membrane, which is its
tell-tale feature, is not visible, or a good sample (green box)
where it is visible.

A. Model Architecture

Table I shows the model architecture used in our
experiments. In both of our experiments we used the value of
N = 2 (number of classes), with the centres of the two prior
multivariate Gaussian distributions located at the opposite
ends of a d-dimensional hypersphere in the AAE latent space.

Encoder
Layer Type Kernels Dropout Activation

Convolutional 4 0.5 Leaky-ReLU
Convolutional 8 0.5 Leaky-ReLU
Convolutional 16 None None

Decoder
Layer Type Kernels Dropout Activation

Input 16 – –
Trans.-Conv 8 0.3 Leaky-ReLU
Trans.-Conv 4 0.3 Leaky-ReLU
Trans.-Conv 36 None None

Classifier and Discriminator
Layer Type Nodes Dropout Activation

Input – – –
Fully-Connected 32 0.5 Leaky-ReLU
Fully-Connected 16 0.5 Leaky-ReLU
Fully-Connected 2 None Softmax

TABLE I: Model architecture used in our experiments

For convolution and transpose-convolution (upsampling)
layers, we used kernels of size 5×5 with a stride of 3. Batch-
normalization was used after each layer of all four segments
of the model. The activation function used throughout the
network is leaky-ReLU with a slope of 0.2 for the negative
inputs. We used Adam optimizer with a learn rate of 0.001.
Data imbalance in our experiments was accounted using a
proportionate weighted sampling for each mini-batch updates.

B. Tumor versus non-tumor

For our first set of experiments, we use the BreakHis
dataset [21], which is available at different magnifications. We
took 400x magnification consisting of 1,450 images divided
between tumor and non-tumor images. To test the robustness
of our method, we synthetically added label noise by randomly

flipping the labels of a pre-determined percent of training
samples. We varied this percentage from 0 to 20 in steps of 5
and we show the AUC values on a clean (without label noise)
held-out dataset in Table II and plot the ROC curves for 20%
noise in Figure 4. We further added color jitter based data-
augmentation on the fly to simulate the staining variations
found in the real world. We compared our models with the
proposed weighting schemes by training a ResNet18 network
(Transfer learning on pretrained model) that does not use any
sample-wise weighting.

C. DCIS versus IDC

In this experiment we used ICIAR 2018 Grand Challenge
dataset called Breast Cancer Histology (BACH) [22]. We took
on the challenging problem of classifying between ductal
carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC).
The distinction between these classes is the presence (in DCIS)
or the absence (in IDC) of a basement membrane around
tumorous cells that otherwise look quite similar.

To generate the training data, we sampled patches of size
512x512 from the original images of the size of 2048x1536.
The sampling resulted in the dataset that contained around
1540 patches. Such sub-sampling presents a more realistic
scenario than the previous experiment for medical image
classification, although we do not have much control over the
percent of labels that are noisy. For instance, a patch sampled
from a DCIS image may not include a basement membrane,
which makes it indistinguishable from an IDC sample. Further,
some samples may contain no tumor region at all - neither
DCIS nor IDC. Additionally, some patches may have other
artifacts as shown in Figure 1.

Once again, we evaluated the robustness of our models on
clean held-out samples by manually curating the test cases
before training the models. We show the AUC values in Table
III and the ROC curves are shown in Figure 4.

V. RESULTS AND CONCLUSION

The AUC values for both of our experiments are shown in
table II and III. The worst case ROCs curves for two exper-
iments are shown in figures4. From the results of the tumor
versus non-tumor experiment, we observe that the performance
of a regular CNN network worsens drastically with increasing
noise. Further the DCIS versus IDC experiment shows that
the robust weighting strategies perform much better than a
conventional CNNs that implicitly overfits on noisy samples.
The weighing strategies we found to be most robust in both
the experiments. The experiments support the direction of
further developing strategies for more robust histopathology,
especially when the quality in image or strong supervision
cannot be ensured.
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Training Scheme ROC-AUC scores for various label noise
levels

0% 5% 10% 15% 20%

AAEC-BW 0.823 0.819 0.819 0.805 0.802

AAEC-BNW 0.836 0.828 0.827 0.808 0.803

AAEC-BWNW 0.815 0.802 0.802 0.806 0.763

AAEC-BNWNW 0.810 0.808 0.808 0.797 0.790

AAEC-NW 0.838 0.829 0.826 0.821 0.814
Conv-Net 0.903 0.851 0.802 0.790 0.796

TABLE II: ROC-AUC scores for held out data for various
label noise levels for tumor versus non-tumor

Training Scheme AUC-ROC scores

AAEC-BW 0.836

AAEC-BNW 0.843

AAEC-BWNW 0.810

AAEC-BNWNW 0.841

AAEC-NW 0.855
Conv-Net 0.809

TABLE III: ROC-AUC scores for held out data for DCIS
versus IDC.
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