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Abstract

Deep learning (DL) thrives on the availability of a large number of high quality images
with reliable labels. Due to the large size of whole slide images in digital pathology,
patches of manageable size are often mined for use in DL models. These patches are
often variable in quality, weakly supervised, individually less informative, and noisily
labelled. To improve classification accuracy even with these noisy input and labels in
histopathology, we propose a novel method for robust feature generation using an adver-
sarial autoencoder (AAE) . The likelihood of the features in the latent space of AAE has
been utilized as a criterion to weigh the training samples. Different weighing schemes
have been proposed for the framework and test the methods on two publicly available
histopathology datasets. Consistent improvement in AUC scores using these methods is
observed, and can be said that robust supervision strategies should be further explored
for computational pathology. The model performance should not depend on the prior
being used, but observations say that it might depend on the choice of priors, experi-
ment has been done using different priors. One of the main objective of the project is
to reduce the amount of labelled data for training, this can be achieved by exploring the
semi-supervision ability of AAE.
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Chapter 1

Introduction

Supervised Deep Learning (DL) models have consistently shown promising results for
automated image analysis in medical image analysis over the last eight years [1] [2] [3].
However, the success of DL models depends on the availability of large datasets of high
quality and correctly labelled images for training. When the quality of the training images
or the accuracy of their labels degrade, the accuracy of the DL models trained using them
reduces drastically [4]. Consequently, for automated medical image analysis in general,
and computational pathology in particular, medical experts on a research team need to
carefully label, annotate, and curate whole slide images (WSIs) to prepare training and
testing datasets. This data preparation process is time-consuming and expensive.

Figure 1.1: Diversity in the quality of histopathology images: (a) Venetian blinds arti-
fact due to improper cut, (b) tissue degradation due to improper fixation, and (c) over-
staining of eosin dye.

On the other hand, weakly supervised labels for WSIs (or large images, in general) are
much easier to obtain. Such weak supervision disregards the heterogeneity in the qual-
ity and anatomical content of patches, For example, image quality can vary with tissue
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preparation, staining, and slide preparation methods [5], as shown in Figure 1.1. Addi-
tionally, intra-tumoral heterogeneity is a natural phenomenon. Spatial heterogeneity in
anatomy and quality combined with the large size of WSIs means that weakly supervised
label propagation from the WSI to its patches leads to mislabeling of a certain unknown
proportion of the individual patches.

Although weakly supervised learning techniques such as multiple instance learning
(MIL) try to address these issues [6], the expressiveness of the generated features is some-
times not strong from the classification perspective as these methods extracts aggregate
bag level features consisting of multiple instances [7]. Such bag formation from several
instances can also reduce the number of training points available for supervision.

Figure 1.2: Dataset with noisy labels

Here, we address the problem of learning robust models for image classification in the
face of label noise and weak supervision. We use adversarial autoencoders to get sample-
wise weights for each training image. We assume and confirm that the samples that can
deteriorate the model training will fall into the lesser likelihood regions of the class specific
distribution priors. This eliminates the need for additional optimization steps to calculate
the sample-wise weights . We have first tested the model for two-class classification and
then extended it to 4-class classification problem with variable priors.
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Chapter 2

Prior Work

Previously in RnD-1, we had worked on an adversarial autoencoders and used it to clas-
sify noisy datasets.

2.1 Adversarial Autoencoder

Unlike other techniques that involve additional optimization steps or predefined curric-
ula, we utilize the likelihood of the features of a sample in the latent space of AAE to
derive its dynamic weight. We hypothesized that the less informative or the noisy sam-
ples will fall into the low likelihood regions of the regularized latent space.

2.1.1 Architecture description

As shown in figure 2.1, our model has an encoder block that acts as a feature generator
for the task-specific classifier as well as for the AAE. The adversarial training for the gen-
erated features in the d-dimensional (d=32 in our experiments) latent space is performed
with the aid of the discriminator block. The discriminator compares the features gener-
ated by the encoder with a random vector sampled from its corresponding class specific
prior distribution, which we assume to be a d-dimensional Gaussian distribution. Since
the task-specific classifier also needs to be optimized, the encoder block in this adver-
sarial task has to generate samples that are optimized both for the classifier as well as
to fool the discriminator. Here the role of decoder block in our architecture is to ensure
that all images belonging to a particular class are pulled towards a mean feature vector
of its Gaussian prior. During the training phase, feature generator and discriminator will
perform the following min-max game to generate the samples:

arg max
Disc

arg min
Enc,Dec,Cls

[C(X, LX + λ1R(X)− λ2D(X, P)] (2.1)
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where C is the classification loss, R is the reconstruction loss, and D is the discriminator

Figure 2.1: Adversarial auto-encoder based architecture used for robust classification.

loss. These losses are sample-wise weighted cross-entropy, mean square error, and cross
entropy respectively in the scheme. Further, X is a training sample and LX is its label,
and P is a sample from the prior distribution. Hyperparameters λ1 and λ2 were decided
based on validation. When the discriminator reports low confidence in distinguishing a
real Gaussian sample against the feature vector, the adversarial training is declared suc-
cessful. Training the classifier separately on top of a well-trained AAE generator gave
poor classifier performance because such a feature generator was agnostic to the classifi-
cation task a priori.

For convolution and transpose-convolution (upsampling) layers, we used kernels of
size 5 × 5 with a stride of 3. Batch- normalization was used after each layer of all four
segments of the model. The activation function used throughout the network is leaky-
ReLU with a slope of 0.2 for the negative inputs. We used Adam optimizer with a learn
rate of 0.001. Data imbalance in our experiments was accounted using a proportionate
weighted sampling for each mini-batch updates.
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2.1.2 Weighing Schemes

We explored the use of following schemes for sample-wise weighting in the loss C to train
the adversarial autoencoder based classifier (AAEC):

• Binary weighting (BW): The sample’s class-specific likelihood is compared to a
global threshold, which is a tunable hyperparameter, to decide on its inclusion or
exclusion (binary weight).

• Binary normalized weighting (BNW): Binary weighting is computed separately
within each training minibatch by normalizing the likelihood within the batch and
comparing that to a threshold.

• Normalised weighting (NW): Continuous weights are obtained by normalizing the
likelihood within each batch.

2.1.3 Flowgraph

The figure 2.4 shows the details steps involved in training the model. The experiments
have been performed on 2 types of dataset, one in which we deliberately add noise (in
steps of 5% from 0 to 20), so that we know the noise content in the dataset and tested with
dataset containing unknown level of noise (this is the first step of data preparation). As in
a medical images dataset, the samples of positive cases will be lower than negative cases,
there will be an imbalance in the dataset. If there is huge imbalance in th dataset, it might
create a problem for the model as it will only learn about negative samples and still give
high accuracy, so it is important to balance such dataset. The next steps have been clearly
shown in the flowgraph and have been already discussed along the objective loss function
in 2.1. The same steps have been used for 4class classification also.

5



Figure 2.2: Flowgraph showing steps involved in training the model.
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2.2 Experiments for Binary Datasets

2.2.1 BACH Dataset (DCIS vs IDC)

conv = [3,4,8,16]
fc = [32,16,2]
Noise=20%

Architecture Accuracy Loss ROC-AUC Score

Simple CNN 57.8125 0.66742 0.682
Resnet 60.1562 0.6953 0.826

Binary Weights 82.03125 0.68844 0.836
Normalized Weights 76.5625 0.576888 0.855

Binary Normalized Weights 81.25 0.49741 0.842
Binary followed by no Weights 82.03125 0.56707 0.810

Normalized followed by no Weights 82.8125 0.62552 0.833
Binary Normalized followed by no Weights 78.125 0.54860 0.841

Table 2.1: Comparison of Weighing Schemes

Figure 2.3: Insitu (DCIS) vs Invasive (IDC)
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2.2.2 Breakhis Dataset (Tumor vs Non-Tumor)

Label noise level - 0% 5% 10% 15% 20%
Training Scheme

Conv-Net 0.903 0.851 0.802 0.790 0.796
AAEC-BWNW 0.815 0.802 0.802 0.806 0.763

AAEC-BW 0.823 0.819 0.819 0.805 0.802
AAEC-BNWNW 0.810 0.808 0.808 0.797 0.790

AAEC-BNW 0.836 0.828 0.827 0.808 0.803
AAEC-NW 0.838 0.829 0.826 0.821 0.814

Table 2.2: ROC-AUC scores for different noise levels tumor vs. non-tumor

Figure 2.4: Tumour vs Non-Tumour: 20% noise

2.3 4-Class Classification Problems

The binary classification task was achieved successfully with high accuracy. To test the
generalization of the model for more than two class classification, we have extended it to
Four class classification problem. The next idea was to use multivariate Gaussian with
unit mean in 4 different quadrants 2.5 of unit hyperspehere. But as can be observed, there
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Figure 2.5: Gaussian lying in 4 quadrants conditioned on label information.

(a) clean labels (b) noisy labels

Figure 2.6: ROC curve for BACH dataset containing 4 classes, clean and noisy labels us-
ing single multivariate Gaussian

are very low ROCs for a few labels and few classes are not well recognised in testing.
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Chapter 3

Objective

3.1 Motivation

4-class classification results using the prior model was unsatisfactory. When our model
was extended to 4-class classification with multivariate gaussian priors, we found that
ROCs for a few labels were very low and they were not being recognised in testing. So
this was one of the main motivation for the RnD-2 work.

Fully supervised algorithms don’t work well on datasets with lots of unlabelled data,
and/or noisy labels and/or outlier samples. So, semi-supervision is needed to address the
problem of noisy labels effectively. Also, Unlabelled dataset might have outliers. Out-of-
distribution samples contained in the unlabelled data also needs to be addressed. So, if we
transfer the knowledge gained from labelled data to unlabelled dataset without making
sure the outlier samples are properly filtered out, the overall accuracy will suffer.

3.2 Aim

• Robust classification on noisy labeled data and a large pool of unlabelled data using
semi supervision

• Negative Learning for segregating clean dataset from noisy samples

• Improve efficacy of semi-supervision using energy based model.

• Address a more complex open-set scenario, where out of distribution samples are
contained in unlabelled data

• Compare results with the temporal baseline model

10



Chapter 4

Literature Survey

4.1 Multi-Task Semi-Supervised Adversarial Autoencoding
for Speech Emotion Recognition(SER)

Figure 4.1: Illustration of the proposed multitask framework using a semi-supervised
adversarial autoencoder (AAE).

Due to scarcity in the dataset available for speech emotion recognition, the authors
have implemented auxiliary tasks(multi-task learning) for which abundant data is avail-
able along with AAE to achieve the main task of emotion recognition. The proposed
model achieves state-of-the-art performance.
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The unsupervised learning capability of the AAE along with supervised training of
three different classifiers(Speaker, emotion and gender) creates a semi-supervised model.
The training of the model is done in 3 phases [8] :

1. Reconstruction Phase : the autoencoder updates the encoder Eθ and the decoder Dδ

and minimises the reconstruction error by encoding x into latent representation z.

2. Regularisation Phase : The discriminator is first trained to distinguish between
real(from prior distribution N ((d; 0, I)) and fake(latent vector) samples. Goal is to
fool the discriminator(Dω) by learning to encode data that Dω perceives as real. Dis-
criminator weights and biases are kept fix and encoder is updated.

3. Classification Phase : The latent code generated is given as input to the classifiers(Cφ)
and cross-entropy loss is minimized. The encoder is updated again.

The objective function is as follows :

Lenc = min
θ

(Ex∼px [log(1− Dω(Eθ(x)))]

+ Ex∼px [βLAE(x, Dδ(Eθ(x)))]

+ Ex,y∼pX,Y [Lc(Eθ(x), y; Cφ)])

(4.1)

The most important point to be noted is that the encoder is being updated in all the
three phases and the prior used is Gaussian with zero mean and standard deviation of 1,
which is of the same dimensions as that of the latent vector. This paper proves that there
is no need to condition on the modes of the Gaussian.

4.1.1 Observations

In semi-supervision Shreekanya and I tried to first exploit the unsupervised learning prop-
erty of the AAE and trained the model without the classifier. So, in this manner, the en-
coder, decoder and the discriminator will be ready with initial weights and biases. In
unsupervised learning, we trained on the clean BACH dataset to get these initial weigths.
Then the same model with a classifier head was trained again, now, we have some learned
features by encoder, the only random weights are that of the classifier. But the reconstruc-
tion using 2-classes was good but that of 4-classes was worse, hence we did not get any
significant improvement in the accuracy for classification. The reconstructed images have
been shown below.
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4.1.2 Results

Figure 4.2: Reconstruction using Unsupervised Learning for binary classification

Figure 4.3: Reconstruction using Unsupervised Learning for 4-class classification

4.2 Using Pre-training can Improve Model Robustness and
Uncertainty (ICML 2019)

The authors have demonstrated through extensive experiments on adversarial examples
(label corruption, class imbalance, out-of-distribution detection, and confidence calibra-
tion), large gains from pre-training and complementary effects with task-specific methods.
Sometimes pre-training may not improve performance on traditional classification met-
rics and segmentation tasks but it improves model robustness and uncertainty estimates.
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For pretraining, Downsampled ImageNet, which is the 1,000-class ImageNet dataset re-
sized to 32 × 32 resolution is being used for all the experiments. For ablation experiments,
they remove 153 CIFAR-10-related classes from the dataset. Wide-ResNet model has been
used in all the experiments, SGD with Nesterov momentum and different learning rates
for pre-training and fine-tuning, datasets on which results have been shown are CIFAR-10
and CIFAR-100.

4.3 DivideMix: Learning With Noisy Labels as Semi-Supervised
Learning (ICLR 2020)

In this work, we propose DivideMix, a novel framework for learning with noisy labels
by leveraging semi-supervised learning techniques. In particular, DivideMix models the
per-sample loss distribution with a mixture model to dynamically divide the training data
into a labeled set with clean samples and an unlabeled set with noisy samples, and trains
the model on both the labeled and unlabeled data in a semi-supervised manner. To avoid
confirmation bias, we simultaneously train two diverged networks where each network
uses the dataset division from the other network. During the semi-supervised training
phase, we improve the MixMatch strategy by performing label co-refinement and label

14



co-guessing on labeled and unlabeled samples, respectively.
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4.4 MixMatch: A Holistic Approach to Semi-Supervised Learn-
ing (NeurIPS 2019)

In this work, we unify the current dominant approaches for semi-supervised learning to
produce a new algorithm, MixMatch, that guesses low-entropy labels for data-augmented
unlabeled examples and mixes labeled and unlabeled data using MixUp. Experimentally,

we show that MixMatch obtains state-of-the-art results on all standard image benchmarks
(section 4.2), and reducing the error rate on CIFAR-10 by a factor of 4; We further show
in an ablation study that MixMatch is greater than the sum of its parts; We demonstrate
in section 4.3 that MixMatch is useful for differentially private learning, enabling stu-
dents in the PATE framework [36] to obtain new state-of-the-art results that simultane-
ously strengthen both privacy guarantees and accuracy. In short, MixMatch introduces a
unified loss term for unlabeled data that seamlessly reduces entropy while maintaining
consistency and remaining compatible with traditional regularization techniques.

16



Chapter 5

Current Methodology

5.1 Breakhis Dataset

The training samples were randomly selected and categorized as 500 labelled samples,
955 unlabelled samples, and 450 outliers (overstained or understained images). The first
basic 2class dataset we worked on was breakhis dataset. We randomly selected and cate-
gorised the training samples into 500 labelled samples, 955 unlabelled samples and 450 of
the overstained and understained samples as outliers.

5.2 Model

In the current methodology, to be explained in brief, we first use Selective NL PL to seg-
regate the noisy labelled dataset into clean labelled and noisy samples. Noisy samples
are added to the unlabelled data. We then calculate energies, detect and remove outliers.
With the remaining labelled-unlabelled data pool, we apply mixmatch semisupervision
to get a robust classification with much better accuracies. I will be explaining the methods
and the results obtained in each in detail.

17



5.3 Negative Learning on Noisy dataset

5.3.1 Complementary Labels

We first find a random complementary label for every sample. So if y is actual training
label, and c is the total number of classes, we randomly select a y’ from the set 1 ..c-y We
also define a c-dimensional probability vector p for every sample. So, for k=1..c, pk is the
probability of the particular sample belonging to class c

5.3.2 Positive Learning

In positive learning the main aim is to maximise py or the probability corresponding
to the actual training label y. So the loss function becomes the cross entropy loss and as
training continues, py tends to 1, satisfying the purpose of positive learning. Incase of
clean dataset, positive learning works quite good.

18



5.3.3 Negative Learning

In negative learning, instead of saying this sample belongs the class y, we say it doesn’t
belong to a class y’ !=y. Y’ here is the randomly selected complementary label and we try
to make py’ tend to 0 inorder to make the model learn that the sample’s target is Not
y’. The loss function therefore has a (1-pk) term in order to optimise the probability of
complementary label far from 1 or in other words close to 0. In a c¿2 class classification,
as the probability of y’!=y being wrong is much higher than the probability of y being
correct, Negative learning tends to make less errors as compared to positive learning in
case of noisy dataset.

5.3.4 Results

Figure 5.1: Comparison b/w NL and PL (a)Loss graph (b) Accuracy graph

In the first graph, loss vs epoch, the light blue curve corresponds to the test loss in
positive learning, there is a drop at the early stage and then a constant value is reached.
This is due to overfitting at the later epochs of training. As against to this, the yellow curve
represents the test loss in negative learning. The curve drops gradually and overfitting is
not observed as training progresses as we had expected. In these histograms, we have
data vs probability. Blue is the clean data and orange represents the noisy samples. In
the first figure, as we can see, the confidence of both clean and noisy data increased with
PL training, whereas in the second figure corresponding to NL, the confidence of noisy
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Figure 5.2: Comparison b/w NL and PL (a)Loss graph (b) Accuracy graph

data is much lower as compared to clean data. This is another evidence to overfitting not
observed in NL.

5.3.5 Selective NL-PL

Coming to Selective NL-PL, we use both NL and PL. We know that NL avoids overfitting
and works well when it comes to noisy data but PL is actually better when the data is
clean. So, in sel NL PL, we start with Negative learning and minimize the corresponding
loss till a confidence threshold of 1/c for the sample target y is reached. Once that’s done,
we can safely now consider the data to be almost clean and use PL to further better the
results.

20



• Selective NL: Improves convergence after NL; confidence threshold of 1/c.

• Selective PL: More accurate than NL for clean labels; confidence threshold of 0.5

• Selective NL and PL: used for filtering noisy data from clean data; confidences sep-
arated by a large margin.

5.3.6 Results and Observations

As we can see from figure c, after selectiveNl, i.e NL followed by confidence thresholding,
the segregation of clean and noisy samples happen. We then use PL to further increase
the confidence margin as can be seen in figure d. Also from the accuracy graph, one can

Figure 5.3: Histogram of training data after (c) Sel-NL (d) Sel-NL-PL

see that the accuracies keeps on increasing with NL, confidence thresholding or inother
words selective NL and finally PL.

Figure 5.4: Accuracy graph. Training performed sequentially with NL, SelNL, SelPL

21



5.4 Pseudolabelling Method

Figure 5.5: Accuracy graph. Training performed sequentially with NL, SelNL, SelPL

• Division of training data into clean or noisy data with CNN trained with SelNLPL

• Training initialized CNN with clean data from (a), then noisy data’s label is updated
with the soft label

• Clean data and label-updated noisy data are both used for training initialized CNN
in the final step.

5.5 Energy Based OOD detection model

22



Energy based OOD model is used to detect outliers before semi supervision. For cal-
culating the energy of a sample we take the logarithm of (sum of e to the power of sample
logits). If y1,y2 are the logits of a particular input sample x, from the output nodes of the
classifier, log(eŷ1+eŷ2) can be a measure of energy of the sample x.

Higher the value in negative scale, greater is the probability of the sample being an
inlier. For instance -0.1 would imply an outlier while -2 would imply an inlier. In the
graph, we have frequency vs energy of the samples, and blue represents the inliers and
brown the outliers. Keeping in mind the negative sign, We can easily see that inliers have
lower energies as compared to outliers.

5.6 Mixmatch Semisupervision

In every batch, every labeled data point is augmented once and every unlabeled data point
is augmented K times. Augmentation here means any kind of transformation like hori-
zontal flip, crop etc. The model is asked to predict the target class for all the K augmented
entries and then their average is taken as the prediction for all the K entries. This average
is sharpened to minimize the entropy and then taken as the final prediction. Augmented
labeled and unlabeled data are then concatenated and shuffled to get a new set W. Say
—X— is the size of the labelled data in the batch, then this labelled data is “mixed up”
with first —X— entries of W to get X’. After this Unlabeled data in the batch is “mixed
up” with rest of the entries of W to get U’. So if x1 and x2 are to be mixed up, we do
a linear combination with a hyper parameter lambda as lambda*x1 + (1-lambda)*x2 and
same with their corresponding targets.

As lambda is ≥ 0.5, MixUp gives more importance to the first point than the second.
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That indirectly implies model’s prediction of X’ should correspond to labeled output and
model’s prediction of U’ should correspond to unlabeled guesses.

For losses, we use the cross entropy loss directly for the labelled data and mse loss for
the unlabelled data.

5.6.1 Results

As semisupervised training progresses, energy of samples starts increasing and the
energies of the inliers tend to coincide with the outliers. Accuracy for Mixmatch with
outliers and single-energy threshold on Breakhis Data: Train: 89%, Val 84%, Test: 85%

When extended to 4 class, we used Et breast cancer dataset and used EH, Endometrial
Hyperplasia as a open set class to include the outliers.

We didn’t use the 4-class breakhis dataset as before as it didnt have as many outliers
and noisy samples as needed. The training samples were selected as: Labeled- 200 per
class (EA,EP and EH), 300 from NE; Unlabeled : 2402

Accuracies observed: Train: 73.25%; Val: 68.18%; Test: 67.01%
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It was observed that the testing and validation accuracies were quite less for this
dataset and as we can see from the graph, the outliers were not being able to be dis-
tinguished itself. Even after increasing the warm-up epochs, no good separation was
observed.
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Chapter 6

Conclusion and Future Work

EH can’t be used as outliers or open-set samples. Energy separation can be made between
samples which have different distributions, but EH falls in the same distribution as rest of
the samples.

Currently, the next focus is on only 4 class classification. Also another suggestion from
Nikhil was to consider only the samples with very low energy for further training. Ac-
curacies would then be expected to increase as probability of choosing the inliers would
be quite high in that case. So, that would be one possible way to solve the coinciding
distribution problem we are facing.
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