
Use of AI and Video Analytics for
Anomaly Detection

A dissertation
submitted in partial fulfillment of requirements of the degree of

BACHELOR OF TECHNOLOGY
in

Computer Science and Engineering
by

POORVI HEBBAR

(170050094)

Under the supervision of

Prof. Ganesh Ramakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Powai, Mumbai – 400076



Declaration

I declare that this written submission represents my ideas in my own words and
where others ideas or words have been included, I have adequately cited and ref-
erenced the original sources. I also declare that I have adhered to all principles of
academic honesty and integrity and have not misrepresented or fabricated or falsi-
fied any idea/data/fact/source in my submission. I understand that any violation
of the above will be cause for disciplinary action by the Institute and can also evoke
penal action from the sources which have thus not been properly cited or from whom
proper permission has not been taken when needed.

Poorvi Hebbar
Roll no. 170050094

IIT Bombay

i



Acknowledgments

I would like to express my sincere gratitude to Prof. Ganesh Ramakrishnan for his
valuable guidance and support throughout this project. I would like to thank him
for his insightful suggestions which helped me in smooth and successful comple-
tion of the project. I am very thankful to Rishabh Dabral for his constant support
and motivation at each and every step of this work. I am also thankful to Sukalyan
Bhakat for his insights in our meets. Last but not the least, I would like to thank
Rachit Bansal, my batchmate and project partner for constantly being there and giv-
ing valuable feedbacks. I would also like to thank my family and friends for their
constant moral support. This work is dedicated to all of them.

Poorvi Hebbar

ii



Abstract

Any behaviour that is considered abnormal or doesn’t fit in can be considered an
anomaly. Anomalies in Proctored Videos are detected in case a student’s behaviour
is suspicious which could imply a high chance of cheating in the examinations. In
an attempt to detect anomalous behaviours in online exams and implement a way
of Automated Proctoring, we hereby try to design an auto-encoder model based on
human pose features which would give an idea how anomalous the video clip is. We
try to look into the asynchronous as well as synchronous settings. We see how Video
Maximal Marginal Relevance can be used for video summarization and selecting
just the anomalous frames which we might be interested in. We also later on try to
optimise our algorithm using online submodular maximisation for synchronous or
online Proctoring.

iii



Contents

1 Introduction 1
1.1 What’s an Anomaly? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Video Datasets and Pre-processing 3
2.1 Anonymization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Asynchronous and Synchronous Video summarization 4
3.1 Asynchronous summarization . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Video-MMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.2 Standard Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . 8

3.2 Synchronous summarzation . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Stream Greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Preemption Streaming . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Sieve Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.3.1 Assumption1: Knowing OPT helps . . . . . . . . . . . 12
3.2.3.2 Assumption2: Knowing max f(e) suffices . . . . . . . . 13
3.2.3.3 Lazy updates: The final Algorithm . . . . . . . . . . . 13

4 Human Pose Estimation 16
4.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Frames to posenets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Autoencoder Model 21
5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 NTU-RGB Dataset 23
6.1 Actions and Rating Labels . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Parsing the Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



Chapter 1

Introduction

In this project, we try to detect anomalies in proctored videos of students giving
exams using an auto-encoder model based on human pose features.

1.1 What’s an Anomaly?

Anomalies here imply any kind of suspicious behaviour which is away from what
is expected. The anomalies in proctored videos are mainly instances of students
cheating in the exams. Possible actions of students giving exams can be classified as
anomalous and non-anomalous Some examples of anomalous actions can be using
a phone, standing up and walking away from the laptop screen, or another person
entering the camera’s view etc as shown in Figure 1.1

Figure 1.1: Anomalous actions: Walking away from the camera view and Using a
mobile phone

Non-anomalous or normal behaviour expected from the students giving exams
would be a few hand or neck movements, drinking water, reading or writing, check-
ing their watch for time etc as shown in Figure 1.2

1



Figure 1.2: Non-Anomalous actions: Writing and Drinking water

Given the different modes in which examinations are conducted the classification
of anomalies can be different for each of them. For example, in SAFE exams, the
students would be using their phone for the question paper but a phone call would
still be anomalous. In case of closed moodle exams typing shouldn’t be considered
as an anomaly but reading from a different book might be considered as an anomaly.

1.2 Proposed Pipeline

The flow diagram of the pipeline can be seen in Figure 1.3.

Figure 1.3: Proposed pipeline

We will now look into each step of the pipeline in detail.

2



Chapter 2

Video Datasets and Pre-processing

Collection of Video Datasets were done as follows:

• Our webcam recordings: We recorded ourselves doing a few anomalous as
well as non-anomalous actions.

• Google Form responses: Sent out a google form for collecting videos from
voluntary friends and batchmates

• Proctoring videos: Formally requested the Institute ethics committee for shar-
ing the proctored videos of IITB students giving proctored quizzes and mid-
sems. (** no longer being used)

• NTU-RGB Dataset: Available on the Rose lab (Rapid Rich Object Search Lab)
page of NTU. This assumes correct pose estimation and ground truth. [ntu]

2.1 Anonymization

Respecting the student’s privacy is very important, hence we ensured that the stu-
dent’s identity is in no way disclosed or used anywhere in the entire project. The
data was shared with only the 4 people working on the project, Prof Ganesh Ra-
makrishnan, Rishabh Dabral, Rachit Bansal and myself, Poorvi Hebbar. We renamed
the videos according to the order in which they appeared in the shared folders and
also sent the code for renaming the files to all the professors who were willing to
share the recordings so that they can do that themselves before sharing. The code is
available here. [rename]

Frame capture was done at 30fps but every 15th frame was considered thus lead-
ing to an average of 2 frames per second being stored.

3



Chapter 3

Asynchronous and Synchronous Video
summarization

The goal of Video summarization is to identify a small number of keyframes or video
segments that contain as much information as possible of the original video. This
step was included later as we noticed that pose estimation takes a lot of time and was
a bottleneck for the entire process. Thus this step would summarize the entire video
and give us a subset of frames which we would be interested in and which would
contain a gist of the entire video i.e while containing as much info as possible. As
the number of frames is decreased to a great extent, the pose estimation step would
be a bit faster.

3.1 Asynchronous summarization

The entire video is available beforehand and any frame can be accessed in any order
whatsoever. It’s offline in nature and the summarization of the proctoring videos
is done after the entire video is stored in a local machine. Previous work on asyn-
chronous Video summarization includes:

• Video Maximal Marginal Relevance (Video-MMR) [vmmr]

• Standard Greedy Algorithm

3.1.1 Video-MMR

If the summary is say S and the entire set of video frames is represented by V, then a
distance measure can be introduced to quantify the relation between S and V or how
well S represents V.

If fj is a frame belonging to V, we iterate over all frames g belonging to S, to
maximise the similarity between fj and g. This frame g would be closest to fj and

4



then the 1 - their similarity would give some kind of a measure of the distance of fj
from g. Extending it to the entire set, and averaging over all frames fj belonging to
V, we get d(S,V). The best Summary would be the one that minimizes this quantity

In the proctoring scenario, our intuition is to construct the summary such that
its visually similar to the content of the videos but at the same time it differs from
the frames which are already selected in S. Following our intuition, we define a new
measure Video-MR(fi) given by

Maximising Video-mr(fi) would mean maximising the similarity between fi and
the frames not yet selected while minimising the similarity between fi and the ones
already selected. Therefore at every step, we chose fi which maximises this quantity.
We can make a set S of some fixed cardinality by following the update rule shown
here.

where Sim1 is a similarity measure between 2 frames while sim2 is that for a
frame and a set of frames. Sim2 can be considered as an average of sim1s between
the frame being considered and every other frame in the set of frames. This average
again can be of 2 types. Arithmetic mean or geometric mean and we will consider
both the variants later on while testing their performance.

So the exact steps to be followed are shown here.

• S1 is initialised with a frame that has the best average similarity with all the
other frames in the set. This frame would be that 1 frame which would be the
most similar to the visual content of the video

5



• We then find the frame which maximises Video-MR(fi), i.e is most similar to
the rest of the video frames and most dissimilar to the frames already selected,

• Set S is updated is with f, and this continues till the cardinality constraint, size
of set S = k is reached.

Performance:

• AM vs GM variant: AM video mmr performed better than the GM variant,
i.e the arithmetic mean would be a better way of getting sim2, the similarity
between the frame and a given set of frames as we can see from the SRC (Sum-
mary Reference Comparison) graphs, Figure 5.2

The ds of AM are comparatively lower than that of GM as they start from some-
what around 0.6 and end at 0.45 while the GM d values start from 0.65 and end
at approx 0.5.

• Tradeoff due to λ : The lambda term decides the trade off between the rele-
vance i.e the similarity to visual content and the novelty i.e how unusual or
abnormal the frame is compared to the ones already selected in the summary.
This in fact also can be used to detect anomalies as the ones with an anomaly
are the ones with abnormal behavior and high reconstruction losses. Thus for
the anomaly detection problem keeping the lambda low would be beneficial if
we are interested in choosing just the abnormal frames. In the paper, for the
video dataset which they considered, the best performance was obtained for
lambda=0.7 as can be seen in Figure 5.2 and here the performance comparison
is done wrt human evaluation.

• Comparison with standard kmeans algorithm: Kmeans algorithm clusters the
similar scenes and then chooses the cluster centres. We have a few advantages
of video mmr compared to this:

– Stability: more stable as there are no randomised initial centres

6



Figure 3.1: Summary distance vs Summary size

– Dynamical Summarization: we can summarize dynamically by maximis-
ing the similarity of the frame to be chosen with the remaining frames of
the video while minimising similarity with the ones already selected. This
can’t be done by Kmeans algo as the k centres are kinda fixed and the en-
tire algo needs to be run again in case new frames are given.

Quality wrt Human choice: QC here is the summary quality of a particular
algo wrt human choice. As we can see the summary subset, got from video
mmr, is much closer to human choice as compared to kmeans.

7



3.1.2 Standard Greedy Algorithm

Lots of video summarization techniques use Online submodular maximization. Se-
lecting the best summary subset can be considered as selecting a subset of data el-
ements optimizing a utility function that quantifies “representativeness” of the se-
lected set. These objective functions satisfy submodularity, an intuitive notion of di-
minishing returns, stating that selecting any given element earlier helps more than
selecting it later. Data summarization requires maximizing submodular set functions
subject to the cardinality constraint i.e the size of the summary is fixed.

If we define a monotonic submodular set function f: 2ˆN −→ R where N is the
finite total number of frames. Therefore if V is the entire set of frames in the video,
the domain of f is the powerset of V. For every possible keyframe subset S ⊂ V,
f(S) quantifies the utility of set S, i.e how well S represents V. This equation here
quantifies the increase in utility by adding e to set S and this is called the marginal
utitilty of e wrt S.

Observe that f is monotone implies4f ≥0 for all e and S. i.e adding any frame to
the subset S is gonna increase the utility. And f is submodular implies if A is a subset
of B and e doesn’t belong to A and B, Adding an element to A is more helpful than
adding it to B.

Algorithm
Greedy algorithm starts with the empty set, and iteratively locates the element with
maximal marginal benefit, i.e at iteration i This requires random access to the data.

8



Hence, while it can easily be applied if the data fits in the main memory, it is im-
practical if the data is arriving over time at a fast pace as we won’t be knowing the
marginal utility of those frames in comparison to the frames we have already seen.

Performance
If k is the size of the summary needed and n is the total number of frames in the
video

• O(k) memory

• O(nk) computation time

• 1-1/e approximation to the optimal solution

3.2 Synchronous summarzation

Here, unlike the asynchronous setting, we have an unpredictable sequence of frames
streaming in and we get 1 frame in each iteration. It’s online and the frames are
selected or rejected as soon as they enter and the subset of selected frames keeps
getting updated in every iteration. Relevant previous work on synchronous Video
summarization includes:

• Stream Greedy Algorithm

• Preemption Streaming

• Sieve Streaming [sieve]

3.2.1 Stream Greedy

Here, too like in the standard greedy algorithm, we start with the empty set and for
the first k iterations, we store all the incoming frames.

For iterations after k, we check whether switching the incoming frame with one
in the already selected subset will increase the value of the utility function f by more
than some relative threshold. If so a, we switch it with the one that maximizes the
utility. Otherwise the summary remains the same.

9



Performance
If k is the size of the summary needed

• O(k) memory

• O(k) queries per frame

• 1-1/ε approximation to the optimal solution where ε is c/k.

3.2.2 Preemption Streaming

This is one of the most simple algorithms for choosing the frames coming through
an online stream but is computationally very expensive. It allows the algorithm to
reject (preempt) previously accepted elements.

Consider the multilinear extension of this function F:[0,1]ˆN −→ R and say, for
every N dimensional binary vector x, F(x) gives a real valued positive number corre-
sponding to how well choosing the frames chosen according to x would approximate
the entire video. “1” at a particular dimension i in the vector x implies that the ith
frame is chosen in the keyframe subset. N here is the total number of frames in the
video

For making sure the uth frame is selected in the key frames subset, consider a N
dimensional vector u, such that all values except for the uth coordinate are 0s. Now
(x ∨ u), the coordinate-wise union of x and u would have 1 as the uth coordinate and
hence would surely have u as one of the selected frames.

The vector N is say a N-dimensional vector with 1s at each coordinate, then for
the vector (N-u), all values except for the uth coordinate are 1s. Therefore (x ∧ (N-
u)), the coordinate wise intersection of x and (N-u) would surely have a 0 at the uth

10



coordinate.
Thus the marginal utility of adding frame u can be given by

Algorithm
For every frame ui received at the ith iteration, we define a threshold θi on the
marginal benefit. If Ni is the set of all frames received till now, we define the subset
Si containing the frames with marginal benefit more than θi and the other frames are
rejected.
This way if θi is > than θi-1, previously selected frames can be rejected too and that
explains the term "pre-emption".

Performance

• O(k) memory and O(k) queries per frame

• 1/4 approximation to the optimal solution

3.2.3 Sieve Streaming

This final optimum algorithm requires only a single pass through the data, and mem-
ory independent of data size. The challenge in this setting is that, when we receive
the next element from the stream, we must immediately decide whether it has “suf-
ficient” marginal value. The approach builds on three key ideas:

• a way of knowing the utility value of the optimum summary subset and using
it to make a threshold for the marginal values of the incoming frames

• As optimum utility value is difficult to guess, we later on guess the threshold
based on the maximum marginal value of a singleton element or a single frame

• lazily running the algorithm for different thresholds when the maximum marginal
utility observed till now keeps getting updated

11



As our final algorithm is a careful mixture of these ideas, we showcase each of them
by making certain assumptions and then removing each assumption to get the final
algorithm.

3.2.3.1 Assumption1: Knowing OPT helps

OPT is the maximum utility value of the function for any subset of size k. Greedy
algorithms work because at every iteration, an element is identified and it reduces
the “gap” to the optimal solution by a significant amount.

We can easily see that if Si is the subset selected by following the greedy algo i.e
if Si is obtained using the following update rule,

for the next element ei+1 to be added to Si, the marginal benefit is ≥ (OPT-
f(Si))/(k-|Si|) as marginal benefits of the chosen frames keeps on diminishing.

Our challenge in sieve streaming is to immediately decide whether an incoming
frame has sufficient marginal value. This will require us to compare it to OPT in
some way which gives the intuition that knowing OPT should help. If we follow
this intuition, for the first element to be chosen, we have the threshold for marginal
benefit as OPT/k. This however won’t work if there is a single element just above
OPT/k at the end of the series while the rest of the elements with marginal value just
below OPT/k appear towards the beginning of the stream. Our algorithm would
have then rejected these elements with marginal value just below OPT/k and can
never get their value.

Therefore instead of keeping the threshold as OPT/k, we keep it as β*OPT/k and
chose a suitable β. Say β=½.

Now suppose we know OPT uptil a constant factor 0 < α < 1; i.e we know v st v
∈ [α*OPT, OPT]. Then at the ith iteration, if Si is the selected subset and |Si| < k, the
algorithm adds a given new frame only if its marginal value is > (v/2-f(Si))/(k-|Si|)
(as beta=½, the v/2 factor appears)

12



3.2.3.2 Assumption2: Knowing max f(e) suffices

The second step is to assume that we know m, ie the maximum utility value of the
function for just a single element or frame. Knowing OPT is difficult as we don’t
have the solution beforehand. In order to get a very crude estimate on OPT, it is
enough to know the maximum value of any singleton element m = max(f(e), e ∈ V
We observe m ≥ OPT ≥ k*m. (Reason: Greedy algorithm requires us to pick frames
with the highest marginal values in descending order. As the first maximum value
is m, the total sum for the entire summary would always be less than k*m)

Now if we consider the set

For atleast one of the thresholds v ∈ O, v would be a good estimate of OPT, i.e (1-
ε)*OPT ≥ v ≥ OPT. So, we could run the previous Algorithm 1 once for each value
v ∈ O, requiring multiple passes over the data and then output the best solution
obtained. Since the algorithm does not know which value v is a good estimate for
OPT, it simulates Algorithm 1 for each of these values v ∈ O.

The size of set O is |O| = O((log k)/ε), so we need that many passes of Algo1.

Obtaining “m” of all singletons still requires one pass over the full data set, and
thus this results in a two-pass algorithm, one for finding m and the other for selecting
the frames and running algo1 for every possible v∈O. But our final algo should need
just one pass over the incoming stream data.

3.2.3.3 Lazy updates: The final Algorithm

One idea for reducing the previous algorithm to a one-pass algorithm is to maintain
an auxiliary variable m which holds the current maximum singleton element after
observing each incoming element and lazily instantiate the thresholds v ∈O defined
previously for this m.

13



This however won’t work as m would be an underestimate of the actual value
of max(f(e)), and hence v chosen above could be much smaller than real OPT. This
implies v/2k, the threshold marginal value for choosing the first frame would be
small and with fixed cardinality, only the first few frames would get selected leaving
the others unattended. Therefore, we increase the range of v to

Thus the final algo maintains an auxiliary variable m that holds the current maxi-
mum singleton element after observing each element ei . Whenever m gets updated,
the algorithm lazily instantiates the set Oi and deletes all thresholds outside Oi or all
vs 6∈ Oi.

We then consider Sv for each v which keeps getting updated with ei+1 in the
ith iteration if the marginal value of ei+1 is ≥ (v/2-f(Svi))/(k-|Svi|) and |Svi| ≤ k.
Finally, we output the best solution among Svs for different vs ∈ final Oi.

Performance

• one pass over the entire dataset and O(klogk/ε) memory

• (½-ε) approximation to OPT

• O(nlogk/ε) complexity whereas classical greedy had O(nk) complexity

Limitations

• f depends on the entire datastream V

• |S| can be smaller than k

14



To overcome the above limitations, we define the evaluation of the utility func-
tion f restricted to a subset W ⊆ V and not the entire V

as long as W is large enough and its elements are randomly chosen, the value of
the empirical mean fw(S) will be a very good approximation of the true mean f(S).

Also, this W acts as a reservoir and can be used to fill up |S| in case it’s smaller
than k. Therefore to get the subset W, we just need to sample uniformly at random
from a data stream once and then use our stream algo, resulting in a 2-pass algorithm
but without the previous limitations.

Competitive Analysis: The performance of each algorithm can be done by compar-
ing them to an optimal offline algorithm that can view the sequence of frames in
advance. Listing down the results of the relevant algorithms for comparison:

15



Chapter 4

Human Pose Estimation

Pose estimation is a computer vision task that infers the pose of a person or object
in an image or video. We can also think of pose estimation as the problem of deter-
mining the position and orientation of a given person or object relative to the camera.
This is done by identifying and tracking the number of keypoints on a given object or
person. For objects, this could be corners or other significant features. When work-
ing with humans, these keypoints represent major joints like elbows, knees, wrists,
etc. This is referred to as human pose estimation. Applications may including video
surveillance, assisted living, and sports analysis. The goal of our machine learning
model is to track the human body keypoints in images and videos.

There is a distinction between detecting one or multiple people in an image or
video. These two approaches can be referred to as single person and multi person
pose estimation.

Meanwhile, the body model formalizes the problem of human pose estimation
into that of estimating the body model parameters or the coordinates of the key
points. We use a simple N-joint rigid skeleton model (N in our case was 17). These
models can be represented as a graph, where each vertex V represents a joint. The
edges E can encode constraints or prior beliefs about the structure of the body model.

16



4.1 Pipeline

The brief pipeline for pose estimation has 4 steps[pose]

• Pre-processing: Background removal might be required for segmenting the
humans from the background and some algorithms especially the ones used for
multi person pose estimation, create bounding boxes for every human present
in the image.

• Feature Extraction: This refers to deriving some values from raw data (such
as an image or video in our case), that can be used as input to a learning al-
gorithm. The features are implicit and the approach uses an encoder-decoder
architecture. Instead of estimating keypoint coordinates directly, the output
from the decoder creates heatmaps or confidence maps representing the likeli-
hood that a keypoint is found in a given pixel or region of an image.

17



We use a pre defined MobileNet-based architecture for the encoder. This archi-
tecture has depthwise separable convolutions that require fewer parameters
and less computation but still provide solid accuracy.

• Inference: We use confidence maps for predicting joint locations. A confidence
map is the probability distribution over the image, representing the confidence
of a particular joint location at every pixel. The implementation we used had a
top down approach, ie the network first uses an object detector to draw a box
around each person, and then estimates the keypoints within each cropped
region.

• Post-Processing: The final output is a single set of heatmaps, and sometimes
predicting joint positions from an input image does not reject or correct any
unnatural human pose. This can sometimes lead to weird Human Pose Esti-
mation like for example the photo of the person doing a yoga pose.

18



Postprocessing algorithms reject unnatural human poses. The output pose
from any Pose Estimation pipeline is passed through a learning algorithm that
scores every pose based on its likeliness. Poses that get scores lower than a
threshold are ignored.

4.2 Frames to posenets

The pose score for an individual determines the likelihood of that pose and the pose
score for each keypoint represents the likelihood of the joint being at that pixel. We
used Google’s pytorch implementation of the posenet model[github] to build our
own code[poorvi-github]. So with N=17 key points, there were 2*17 coordinates
and each joint had a pose score, apart from the individual’s entire pose score, thus
resulting in a 52 dimensional vector for every person in the frame.

An example of this can be seen in the soccer image, Figure 4.1. Because there were
2 people in the frame, there would be 2 sets of keypoints, their coordinates, and their
respective pose scores. The keypoints, their coordinates, and the corresponding pose
scores are shown in the terminal output.

19



(a) original (b) posenet

Figure 4.1: Example of posenet from original soccer image

The combined vectors of all the frames in a particular video were then passed on to
the auto-encoder with their corresponding labels.

20



Chapter 5

Autoencoder Model

We use an autoencoder[autoencoder] to learn the non-anomalous behavior as au-
toencoders act as powerful feature detectors. The weightage given to anomalous
data is set to be much less than the weightage given to non-anomalous data while
training the autoencoder. We experimented with various forms of the autoencoder
by replacing fully connected layers with convolutional layers; adding LSTM, max-
pooling layers; altering activation function, etc. to find an autoencoder that gives the
minimum reconstruction loss. The reconstruction loss also decreased substantially
after normalising the vectors.

5.1 Architecture

We had split the data collected into training and test data. We then sorted the
frames according to the reconstruction error. The 52 sized vectors of 20 subsequent
frames are concatenated and given as input to the autoencoder. More the reconstruc-
tion error, more is the anomaly in a frame. We analysed the top 5% frames with the

21



maximum reconstruction loss and figured that those frames showed anomaly. Some
of the anomalous frames had lighting issues, therefore, the student is suggested to
sit in a well-lit area during the exam.

5.2 Results

We obtained the best results after using the shown autoencoder and ReLU activa-
tion function. After normalization final loss during training is of the order of 10ˆ-6
Frames with minimum reconstruction loss (in the order 10ˆ-3 to 10ˆ-2 ) were obtained
from the non-anomalous videos while the ones with high reconstruction loss were
from anomalous ones. The posenet and the test results for the series of frames shown
at the beginning of the report are as follows:

Figure 5.1: Test output label: Anomalous

Figure 5.2: Test output label: Non-Anomalous

22



Chapter 6

NTU-RGB Dataset

As the pose-estimation we did was dependant on features of the person like height,
distance, and orientation wrt camera, we needed a dataset that is person agnos-
tic. Action Recognition NTU-RGB dataset[ntu1] has a collection of 60 actions with
around 56k samples and NTU-RGB 120[ntu2] was its extended version and had a
collection of 120 actions with 114k samples. These already have correct pose esti-
mation and are person agnostic i.e we assumed that the ground truth per frame is
scale normalised and thus the effect of the physique of the person being considered
is minimal.

There were 4 different modalities or 4 different types of inputs observed

• RGB: The common images we see around us

• Depth Map Sequences: Value of a pixel relates to the distance from the camera

• IR image: Value of a pixel is determined by the amount of infrared light re-
flected back to the camera.

• 3D skeletal Data: 3D coordinates of every single joint in the image

6.1 Actions and Rating Labels

Coming to the dataset actions, there were 3 broad classes: daily actions, mutual
actions, and medical conditions (Figure 6.1). A1 to A60 are contained in NTU-RGB
dataset while A1-A120 are in its extended version nturgb 120. We have used the 60
actions NTU-RGB dataset for our project.

We map these actions to 5 ratings. Higher the rating of the action video, lower
is its anomaly behaviour. For Example, All 2 person interactions are labelled 1 as
they are anomalous in an exam scenario. On the other hand, A1: drink water, A11:
reading, A12: writing are non-anomalous and are given a label 5. Similarly a few
actions like A25: reach into pocket, A90: take object out of bag are slightly suspicious

23



actions and can be given a lower rating while A9: standing up and A15: take off
jacket are considerably less anomalous and could be given a higher rating.

Figure 6.1: Actions

24



Figure 6.2: Sample Frames

Figure 6.3: Sample Videos

Some sample frames and videos in the dataset are shown in Figure 6.2 and 6.3
respectively.

25



6.2 Parsing the Ground Truth

Each file/folder name in both datasets is in the format of SsssCcccPpppRrrrAaaa
(e.g., S001C002P003R002A013), in which sss is the setup number, ccc is the camera
ID, ppp is the performer (subject) ID, rrr is the replication number (1 or 2), and aaa
is the action class label. We here try to extract just the relevant attributes which are
3d pose skeletal data and 2d pose skeletal data.[ntu-github]

2D pose estimation simply estimates the location of keypoints in 2D space relative
to an image or video frame. The model estimates an X and Y coordinate for each
keypoint. 3D pose estimation works to transform an object in a 2D image into a
3D object by adding a z-dimension to the prediction which is estimated from the
depth map. 3D pose estimation allows us to predict the actual spatial positioning of
a depicted person or object.

The number of keypoints being considered for the ntu dataset is 25, so if the
number of frames in the action video is f, then the size of the 3d skeletal data is
f*25*3 while that of 2d is f*25*2. If there is more than 1 person in the image, sets of
these data are collected. Corresponding to every action, we already had defined the
rating and this would be the label of the video going into the autoencoder.

6.3 Results

We trained our autoencoder on the datasets with different labels separately and
found that the reconstruction loss was lesser while training for the dataset which
is non-anomalous. On the trained autoencoder, the error for the dataset with rating
1 (of the order 10ˆ-2) is more for the dataset with rating 5 (of the order 10ˆ-3 ). As
the reconstruction loss is of the order 10ˆ-5 while training for this dataset, the task of
finding better layers has to be done in future.

26



Future Scope

Autoencoder training and testing for NTU-RGB Dataset with 5 classes of actions
needs to optimized and testing should be made into a 5-class classification problem.
The other way to work on this would be to rank the frames in descending order
of reconstruction error (Rank 1 is most difficult to reconstruct. This would be an
efficient way to detect anomalies in a synchronous setting.

Efficient Anomaly detection and Automated Proctoring using posenet features
for different modes of exams (SAFE, Moodle etc) needs to be completely imple-
mented. Synchronous Video Summarization has not yet been done and needs to
be completed and included in the pipeline. Video Summarization and anomaly de-
tection needs to be done simultaneously in a this set up and the reconstruction loss
or video-MMR concept could be a good start for this.

27



Bibliography

[1] https://towardsdatascience.com/human-pose-estimation-simplified-6cfd88542ab3

[2] https://www.cv-foundation.org/openaccess/content_cvpr_

2016/papers/Shahroudy_NTU_RGBD_A_CVPR_2016_paper.pdf

[3] https://arxiv.org/pdf/1905.04757.pdf

[4] http://rose1.ntu.edu.sg/datasets/actionrecognition.asp

[5] https://colab.research.google.com/drive/

18DmaHJuTL0qUWbn8kSqOqCA_dEfRz6Od?usp=sharing

[6] https://ieeexplore.ieee.org/document/5617655

[7] http://www.cs.cornell.edu/~ashwin85/docs/

frp0328-badanidiyuru.pdf

[8] https://github.com/rwightman/posenet-pytorch

[9] https://github.com/poorvirhebbar/anomaly-detection-in-proctored-videos

[10] https://colab.research.google.com/drive/

19PLR-Bj7bBJ9G9gj6KP-Qqswc9uv4TCj?usp=sharing

[11] https://github.com/shahroudy/NTURGB-D/tree/master/Python

28

https://towardsdatascience.com/human-pose-estimation-simplified-6cfd88542ab3
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shahroudy_NTU_RGBD_A_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shahroudy_NTU_RGBD_A_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1905.04757.pdf
http://rose1.ntu.edu.sg/datasets/actionrecognition.asp
https://colab.research.google.com/drive/18DmaHJuTL0qUWbn8kSqOqCA_dEfRz6Od?usp=sharing
https://colab.research.google.com/drive/18DmaHJuTL0qUWbn8kSqOqCA_dEfRz6Od?usp=sharing
https://ieeexplore.ieee.org/document/5617655
http://www.cs.cornell.edu/~ashwin85/docs/frp0328-badanidiyuru.pdf 
http://www.cs.cornell.edu/~ashwin85/docs/frp0328-badanidiyuru.pdf 
https://github.com/rwightman/posenet-pytorch
https://github.com/poorvirhebbar/anomaly-detection-in-proctored-videos
https://colab.research.google.com/drive/19PLR-Bj7bBJ9G9gj6KP-Qqswc9uv4TCj?usp=sharing
https://colab.research.google.com/drive/19PLR-Bj7bBJ9G9gj6KP-Qqswc9uv4TCj?usp=sharing
https://github.com/shahroudy/NTURGB-D/tree/master/Python

	Introduction
	What's an Anomaly?
	Proposed Pipeline

	Video Datasets and Pre-processing
	Anonymization

	Asynchronous and Synchronous Video summarization
	Asynchronous summarization
	Video-MMR
	Standard Greedy Algorithm

	Synchronous summarzation
	Stream Greedy
	Preemption Streaming
	Sieve Streaming
	Assumption1: Knowing OPT helps
	Assumption2: Knowing max f(e) suffices
	Lazy updates: The final Algorithm



	Human Pose Estimation
	Pipeline
	Frames to posenets

	Autoencoder Model
	Architecture
	Results

	NTU-RGB Dataset
	Actions and Rating Labels
	Parsing the Ground Truth
	Results


