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Abstract

The first part of this report consists of my work on my BTP1: Use of Al and Video
Analytics for Anomaly Detection in Proctored Videos. Any behaviour that is consid-
ered abnormal or doesn’t fit in can be considered an anomaly. Anomalies in Proc-
tored Videos are detected in case a student’s behaviour is suspicious which could
imply a high chance of cheating in the examinations. In an attempt to detect anoma-
lous behaviours in online exams and implement a way of Automated Proctoring, we
hereby try to design an auto-encoder model based on human pose features which
would give an idea how anomalous the video clip is.

The next part of this report mainly contains a comprehensive summary of the
different approaches taken towards Human Pose Estimation, along with recent de-
velopments using self-supervision. Human Pose estimation is a Computer Vision
problem which estimates the pose of humans either from images or videos, in 2D or
3D. It presents the advantages of using such self-supervised networks as compared
to CNN based approaches commonly used. We also look into some experiments us-
ing a combination of pre-training and fine tuning with BERT models for Future Pose
Prediction, which paves the way for future works in this field.
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Chapter 1

Introduction

Pose estimation is a computer vision task that infers the pose of a person or object
in an image or video. We can also think of pose estimation as the problem of deter-
mining the position and orientation of a given person or object relative to the camera.
This is done by identifying, and tracking a number of keypoints on a given object or
person. For objects, this could be corners or other significant features. When work-
ing with humans, these keypoints represent major joints like elbows, knees, wrists,
etc. This is referred to as human pose estimation.

Human Pose Estimation is the task of determining the location of a fixed number
of joints of a person present in an image.Now this task may be extended to perform
pose estimation for multiple people present in the an image,or to estimate their joint
locations in 3D. There is a distinction between detecting one or multiple people in an
image or video. These two approaches can be referred to as single person and multi
person pose estimation. Furthermore, in 3D this notion of pose estimation canalso
be extended to the task of shape estimation.

Applications may including video surveillance, assisted living, and sport analy-
sis. The goal of our machine learning model is to track the human body keypoints
in images and videos.



Meanwhile the body model formalizes the problem of human pose estimation
into that of estimating the body model parameters or the coordinates of the key
points. We use a simple N-joint rigid skeleton model (N in our case was 17). These
models can be represented as a graph, where each vertex V represents a joint. The
edges E can encode constraints or prior beliefs about the structure of the body model.

Any behaviour that is considered abnormal or doesn'’t fit in can be considered
ananomaly. Anomalies in Proctored Videos are detected in case a student’s be-
haviour is suspicious which could imply a high chance of cheating in the examina-
tions. In an attempt to detect anomalous behaviours in online exams and implement
a way of Automated Proctoring, in my BTP-1 we tried to design an auto-encoder
model based on human pose features which would give an idea how anomalous the
video clip is. This report is a summary of experiments conducted in the fields of
learning Human Pose Estimation and Future Pose Prediction.



Chapter 2

Anomaly Detection (BTP I)

In this project, we try to detect anomalies in proctored videos of students giving
exams using an auto-encoder model based on human pose features.

2.1 What’s an Anomaly?

Anomalies here imply any kind of suspicious behaviour which is away from what
is expected. The anomalies in proctored videos are mainly instances of students
cheating in the exams. Possible actions of students giving exams can be classified as
anomalous and non-anomalous Some examples of anomalous actions can be using
a phone, standing up and walking away from the laptop screen, or another person
entering the camera’s view etc as shown in Figure 2.1

Figure 2.1: Anomalous actions: Walking away from the camera view and Using a
mobile phone

Non-anomalous or normal behaviour expected from the students giving exams
would be a few hand or neck movements, drinking water, reading or writing, check-
ing their watch for time etc as shown in Figure 2.2
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Figure 2.2: Non-Anomalous actions: Writing and Drinking water

Given the different modes in which examinations are conducted the classification
of anomalies can be different for each of them. For example, in SAFE exams, the
students would be using their phone for the question paper but a phone call would
still be anomalous. In case of closed moodle exams typing shouldn’t be considered
as an anomaly but reading from a different book might be considered as an anomaly.

2.2 Proposed pipeline

The flow diagram of the pipeline can be seen in Figure 2.3

[ Video Datasets ]:>[ Anonymization J:'>( Frame Capture J:>( Summarization ‘
( Testing J@

Autoencoder Training ﬁ:{ Pose Estimation ﬁKey point deteCtiDnJ

Figure 2.3: Proposed Pipeline

We will now look into each step of the pipeline in detail.



2.2.1 Video Datasets

Collection of Video Datasets were done as follows:

* Web cam recordings: Volunteering students performing a few anomalous as
well as non-anomalous actions

* Proctoring videos: Formally requested the Institute ethics committee for shar-
ing the proctored videos of IITB students giving proctored quizzes and mid-
sems. (** no longer being used)

¢ NTU-RGB Dataset: Available on the Rose lab (Rapid Rich Object Search Lab)
page of NTU. This assumes correct pose estimation and ground truth.

2.2.2 Video Summarization

The goal of Video summarization is to identify a small number of keyframes or video
segments which contain as much information as possible of the original video. This
step was included later as we noticed that pose estimation takes a lot of time and was
a bottleneck for the entire process. Thus this would summarize the entire video and
give us a subset of frames which we would be interested in and which would contain
a jist of the entire video i.e while containing as much info as possible. As the number
of frames is decreased to a great extent, the pose estimation step would be a bit faster.

Asynchronous Summarization: The entire video is available beforehand and any
frame can be accessed in any order whatsoever. It’s offline in nature and the sum-
marization of the proctoring videos is done after the entire video is stored in a local
machine. Previous work on asynchronous Video summarization includes:

¢ Video Maximal Marginal Relevance (Video-MMR) [1]
¢ Standard Greedy Algorithm

Synchronous Summarization: We have an unpredictable sequence of frames stream-
ing in and we get 1 frame in each iteration. It’s online in nature and the frames are
selected / rejected as soon as they enter & the subset of selected frames keeps getting
updated in every iteration. Previous work on synchronous Video summarization:

¢ Stream Greedy Algorithm
* Preemption Streaming
¢ Sieve Streaming [2]

For the details and results of each algorithm, please refer to the Appendix A.
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Chapter 3

Human Pose Estimation

A key element of Scene Understanding is perception and interpretation of hu-
mans and the associated interactions. While human perception typically involves in-
ferring the physical attributes about the humans (detection, poses, shape, gaze etc.),
interpreting humans involves reasoning about the finer details relating to human ac-
tivity, behaviour, human-object visual relationship detection, and human-object in-
teractions. This can be broadly classified into 2 domains -Image and Video settings.
The goal is to identify the objects interacting with the humans while also estimating
the kind of interaction, eg., holding the cup, placing the bowl, moving the furniture,
etc. We explore both of these in our works.

Human Pose Estimation is a vital application of computer vision, which allows
it to unlock it’s true potential in the field of robotics, VR, gaming, animation and so
on. It is the task of determining the location of a fixed number of joints of a person
present in an image. Now this task may be extended to perform pose estimation
for multiple people present in the an image,or to estimate their joint locations in 3D.
Furthermore, in 3D this notion of pose estimation can also be extended to the task of
shape estimation.

A major breakthrough that propelled the use of convolutional neural networks
(CNN) incomputer vision was the advent of deep learning. Eversince, CNN mod-
els have been widely deployed in most computer vision tasks, and unsurpris-ingly,
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almost all models developed for human pose estimation are based on CNNs. CNN
based approaches have topped all image recognition and pose estimation challenges.

3.1 Pipeline

The brief pipeline for pose estimation has 4 steps[3]

* Pre-processing: Background removal might be required for segmenting the
humans from the background and some algorithms especially the ones used for
multi person pose estimation, create bounding boxes for every human present
in the image.

Bounding Box creation. Image courtesy Fang et al. (2017)

¢ Feature Extraction: This refers to deriving some values from raw data (such
as an image or video in our case), that can be used as input to a learning al-
gorithm. The features are implicit and the approach uses an encoder-decoder
architecture. Instead of estimating keypoint coordinates directly, the output
from the decoder creates heatmaps or confidence maps representing the likeli-
hood that a keypoint is found in a given pixel or region of an image.

224 %224 x3 224 x 224 x 6d

112 %[112 % 128
56l 56 % 2566
o 28 % 28 % 512 TxTx512

- x4 312 | 14096 1151000

@ convolution+ReLLT
( A max pooling
] fully connected+HealL

1 softmax

VGG16 : A CNN based feature extraction and image classification architecture



We use a pre defined MobileNet-based architecture for the encoder. This archi-
tecture has depthwise separable convolutions that require fewer parameters
and less computation but still provides solid accuracy.

Inference: We use confidence maps for predicting joint locations. Confidence
map is the probability distribution over the image, representing the confidence
of a particular joint location at every pixel. The implementation we used had a
top down approach, ie the network first uses an object detector to draw a box

around each person, then estimates the keypoints within each cropped region.

MNeck L-Shoulder L-Elbow

Confidence map examples

Post-Processing: The final output is a single set of heatmaps, and sometimes
predicting joint positions from an input image does not reject or correct any
unnatural human pose. This can sometimes lead to weird Human Pose Esti-
mation like for example the photo of the person doing a yoga pose.

Pose Estimation using Kinect containing weird and unnatural pose

Postprocessing algorithms reject unnatural human poses. The output pose
from any Pose Estimation pipeline is passed through a learning algorithm which
scores every pose based on its likeliness. Poses that get scores lower than a
threshold are ignored.



3.2 Frames to posenets

The pose score for an individual determines the likelihood of that pose and the pose
score for each keypoint represents the likelihood of the joint being at that pixel. We
used Google’s pytorch implementation of the posenet model[4] to build our own
code[5]. So with N=17 key points, there were 2*17 coordinates and each joint had
a pose score, apart from the individual’s entire pose score, thus resulting in a 52
dimensional vector for every person in the frame.

(a) original (b) posenet

Figure 3.1: Example of posenet from original soccer image

An example of this can be seen in the soccer image, Figure 3.1. Because there
were 2 people in the frame, there would be 2 sets of keypoints, their coordinates and
their respective pose scores. The keypoints, their coordinates and the corresponding
pose scores are shown in the terminal output.

A key step toward understanding people in images and video is accurate pose
estimation. Given a single RGB image, we wish to determine the precise pixel loca-
tion of important keypoints of the body. Achieving an understanding of a person’s
posture and limb articulation is useful for higher level tasks like action recognition,
and also serves as a fundamental tool in fields such as human-computer interaction
and animation.

As a well established problem in vision, pose estimation has plagued researchers
with a variety of formidable challenges over the years. A good pose estimation
system must be robust to occlusion and severe deformation, successful on rare and
novel poses, and invariant to changes in appearance due to factors like clothing and
lighting.

The combined vectors of all the frames in a particular video were then passed on to
to the auto-encoder with their corresponding labels.



<1 poorvi@poorvi-X556UQK: ~/Desktopfbtp_ganeshsirfimage_posenet/...

3.3 Autoencoder Model

We use an autoencoder[6] to learn the non-anomalous behavior as autoencoders act
as powerful feature detectors. The weightage given to anomalous data is set to be
much less than the weightage given to non-anomalous data, while training the au-
toencoder. We experimented with various forms of the autoencoder by replacing
tully connected layers with convolutional layers; adding LSTM, max-pooling layers;
altering activation function etc. to find an autoencoder which gives the minimum
reconstruction loss. The reconstruction loss also decreased substantially after nor-
malising the vectors.

3.3.1 Architecture

We had split the data collected into training and test data. We then sorted the frames
according to the reconstruction error. The 52 sized vectors of 20 subsequent frames
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are concatenated and given as input to the autoencoder. More the reconstruction
error, more is the anomaly in a frame. We analysed the top 5% frames with the
maximum reconstruction loss and figured that those frames showed anomaly. Some
of anomalous frames had lighting issues, therefore, the student is suggested to sit in
a well lit area during the exam.

3.3.2 Results

We obtained the best results after using the shown autoencoder and ReLU activa-
tion function. After normalization final loss during training is of the order of 10™-6
Frames with minimum reconstruction loss (in the order 10™-3 to 10"-2 ) were obtained
from the non-anomalous videos while the ones with high reconstruction loss were
from anomalous ones. The posenet and the test results for the series of frames shown
in the beginning of the report are as follows:

Figure 3.2: Test output label: Anomalous
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Figure 3.3: Test output label: Non-Anomalous

3.4 NTU-RGB Dataset

As the pose-estimation we did was dependant on features of the person like height,
distance and orientation wrt camera, we needed a dataset which is person agnostic.
Action Recognition NTU-RGB dataset[7] has a collection of 60 actions with around
56k samples and NTU-RGB 120[8] was its extended version and had a collection of
120 actions with 114k samples. These already have correct pose estimation and are
person agnostic i.e we assumed that the ground truth per frame is scale normalised
and thus the effect of the physique of the person being considered is minimal.
There were 4 different modalities or 4 different types of inputs observed

* RGB: The common images we see around us
¢ Depth Map Sequences: Value of a pixel relates to the distance from the camera

* IR image: Value of a pixel is determined by the amount of infrared light re-
flected back to the camera.

¢ 3D skeletal Data: 3D coordinates of every single joint in the image

3.4.1 Actions and Rating Labels

Coming to the dataset actions, there were 3 broad classes: daily actions, mutual
actions and medical conditions (Figure 3.4). Al to A60 are contained in NTU-RGB
dataset while A1-A120 are in its extended version nturgb 120. We have used the 60
actions NTU-RGB dataset for our project.

We map these actions to 5 ratings. Higher the rating of the action video, lower
is its anomaly behaviour. For Example, All 2 person interactions are labelled 1 as
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they are anomalous in an exam scenario. On the other hand, Al: drink water, A11:

reading, A12: writing are non-anomalous and are given a label 5. Similarly a few

actions like A25: reach into pocket, A90: take object out of bag are slightly suspicious

actions and can be given a lower rating while A9: standing up and A15: take off

jacket are considerably less anomalous and could be given a higher rating.

1.1 Daily Actions (82)

ALl: drink water A2: eat meal A3: brush teeth Ad: brush hair

A5S: drop A6: pick up AT: throw A8: sit down

AQ: stand up A10: clapping All: reading A12: writing

A13: tear up paper Al4: put on jacket A15: take off jacket A16: put on a shoe

ALl7: take off a shoe Al18: put on glasses A19: take off glasses A20: put on a hat/cap
A21: take off a hat/cap A22: cheer up A23: hand waving A24: kicking something
A25: reach into pocket A26: hopping A27: jump up A28: phone call

A29: play with phone/tablet A30: type on a keyboard A31: point to something [|A32: taking a selfie

A33: check time (from watch) |[A34: rub two hands A35: nod head/bow A36: shake head

A37: wipe face A38: salute A39: put palms together (|A40: cross hands in front
A61: put on headphone A62: take off headphone A63: shoot at basket A64: bounce ball

|A65: tennis bat swing |A66: juggle table tennis ball ||A67: hush ||A68: flick hair |
A69: thumb up A70: thumb down AT71: make OK sign AT72: make victory sign
AT3: staple book A74: counting money AT5: cutting nails AT6: cutting paper

AT7: snap fingers A78: open bottle AT9: sniff/smell AB0: squat down

AB1: toss a coin AB82: fold paper AB3: ball up paper AB4: play magic cube
AB5: apply cream on face A86: apply cream on hand AB7: put on bag AB8: take off bag

AB9: put object into bag A90: take object out of bag |A91: open a box A92: move heavy objects
A93: shake fist A94: throw up cap/hat A95: capitulate A96: cross arms

A97: arm circles A98: arm swings A99: run on the spot A100: butt kicks

A101: cross toe touch A102: side kick - -

1.2 Medical Conditions (12)

A41: sneeze/cough A42: staggering A43: falling down A44: headache
A45: chest pain A46: back pain A47: neck pain A48: nausea/vomiting
A49: fan self A103: yawn A104: stretch oneself A105: blow nose

1.3 Mutual Actions / Two Person Interactions (26)

A50: punch/slap AS1: kicking A52: pushing AS3: pat on back

A54: point finger A55: hugging AS6: giving object A57: touch pocket

A58: shaking hands A59: walking towards AG60: walking apart A106: hit with object

A107: wield knife A108: knock over A109: grab stuff A110: shoot with gun
Alll: step on foot A112: high-five A113: cheers and drink A114: carry object

[A115: take a photo |Aa116: follow |A117: whisper |A118: exchange things |

[A119: support somebody

|A120: rock-paper-scissors

Figure 3.4: Actions

3.4.2 Parsing the Ground Truth

Each file/folder name in both datasets is in the format of SsssCcccPpppRrrrAaaa
(e.g., S001C002PO03R002A013), in which sss is the setup number, ccc is the camera
ID, ppp is the performer (subject) ID, rrr is the replication number (1 or 2), and aaa
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is the action class label. We here try to extract just the relevant attributes which are
3d pose skeletal data and 2d pose skeletal data.[9]

2D Pose Estimation vs 3D Pose Estimation

‘Sampe frames of "NTU RGB+D" dataset Sampe frames of "NTU RGB+D 120" dataset

e £ B e TR
ot B O Ed T B
blanin ¥ Ot il i
Baiithiid Bl Ll
PRGN [

Figure 3.5: Sample Frames

YouTube

Figure 3.6: Sample Videos

Some sample frames and videos in the dataset are shown in Figure 3.5 and 3.6
respectively.
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2D pose estimation simply estimates the location of keypoints in 2D space relative
to an image or video frame. The model estimates an X and Y coordinate for each
keypoint. 3D pose estimation works to transform an object in a 2D image into a
3D object by adding a z-dimension to the prediction which is estimated from the
depth map. 3D pose estimation allows us to predict the actual spatial positioning of
a depicted person or object.

Figure 3.7: An example of Single Person Pose Estimation

Number of keypoints being considered for the ntu dataset is 25, so if the number
of frames in the action video is f, then the size of the 3d skeletal data is £*25*3 while
that of 2d is £*25*2. If there is more than 1 person in the image, sets of these data are
collected. Corresponding to every action, we already had defined the rating and this
would be the label of the video going into the autoencoder.

3.4.3 Results

For the NTU-RGB Dataset, we trained our autoencoder on the datasets with different
labels separately and found that the reconstruction loss was lesser while training for
the dataset which is non-anomalous. On the trained autoencoder, the error for the
dataset with rating 1 (of the order 10"-2) is more for the dataset with rating 5 (of the
order 10°-3 ). As the reconstruction loss is of the order 10"-5 while training for this
dataset, the task of finding better layers has to be done in future.
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Chapter 4

Future Pose Prediction

4.1 Introduction

A vital part of Human Motion modelling is the task of future pose prediction. Pose
prediction is to predict future poses given a window of previous poses. Machines
that can observe and interact with moving humans, whether in actual or virtual sur-
roundings, need to understand how people move. Because human motion is the
product of both physical constraints as well as the intentions of humans, motion
modeling is a complex task that should be ideally learned from observations.

Ground truth

ER
—

LSTM-3LR

Ours SRNM
-
e

Conditioning ground truth Prediction

Figure 4.1: An example of models predicting human poses. The seed sequence is on
the left, while the model predictions are on the right. Source: [31]

In this chapter, we try to predict 3D human poses in an auto-regressive fashion, i.e.
given their previous motion information, we try to predict the next pose, and then
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feed this pose as input, and so on. Our approach is inspired by the recent success of
transformer based models in NLP tasks such as language generation, which is simi-
lar to our task of future pose prediction. Language generation is to predict the next
sequence of words given a seed sentence, which is infact quite similar to predicting
poses. We therefore make use of OpenAl GPT-2 [39] architecture to model human
motion. The GPT2 model is based on the decoder part of the transformer model.
We use this instead of the BERT model which is based on the encoder because GPT2
uses masked self-attention. As a result, GPT2 computes attention only on timesteps
before the current timestep, as opposed to BERT which computes attention over the
entire input sequence. And since in motion modelling we want to predict the i'h
pose conditioned on all timesteps before it, we use the GPT model.

4.2 Dataset

We use Human 3.6M dataset [13], which is the largest dataset on motion capture
data. There are 3.6 million 3D human poses and images corresponding to 17 scenar-
ios (discussion, smoking, taking photo, talking on the phone, etc..) We use the same
pose representation as [[31], [28], [18]] and also evaluate using the same method,
for fair comparison. Pose is represented as an exponential map of each joint, with
special processing of global translation and rotation [19]. Loss evaluation is done by
computing euclidean distance between predicted and ground truth poses in angle-
space. Although the number of dimensions in exponential map of a pose is 99, we
model only 54 of them [31] because the rest of the dimensions either do not vary, or
they vary by a very small fraction.

4.3 Related Work

Conventional techniques used in this problem commonly involve imposing knowl-
edge about motion through Markovian assumptions([10], [36]), smoothness or low
dimensional embeddings[27]. More recent attempts at solving this problem make
use of deep learning based architectures, like RNN’s, LSTM’s and GRU’s[[31], [28],
[18]]. These temporal aggregators have not been known to perform well when tested
on both qualitative as well as quantitative evaluations of their results. It is often seen
that while trying to predict longer sequences of motion, certain unrealistic poses
tend to slip in, while in short-term results, there exists a clear discontinuity between
the seed sequence and the predicted poses(figure 4.1). With our GPT2 based model,
we hope to predict more realistic poses over a longer time horizon, thanks to the
self-attention feature of the transformer-decoder.
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44 Our Model

Linear Layer

6 [ DECODER BLOCK ]
1

2 [ DECODER BLOCK ]

Transformer-Decoder DECODER BLOCK
er2 | |

T '[ Masked Self-Attention ]

Linear Layer

Figure 4.2: A picture to demonstrate the working of our Pose-GPT model. The seed
sequence(poses) is fed into the OpenAI GPT-2 model, Source: this blog

We make use of the OpenAl GPT2 [39] model architecture for modelling human
motion. We test 2 variants of the model, one with 2 and the other with 4 decoder lay-
ers. Embedding dimension used is 768, and the input pose is transformed through
a linear layer into the pose embedding. Another linear layer on the output of the
GPT2 model transforms the predicted pose embedding into the predicted pose.

4,5 Performance Metrics

Pose estimation requires a different set of metrics to evaluate its performance as com-
pared to other vision tasks. They are as follows:
1. Percentage of Correct Keypoints(PCK):

This metric calculates the percentage of correctly identified joints. A joint is
correctly inferred if it lies within a certain threshold distance from the ground
truth joint position.

2. Percentage of Correct Keypoints head (PCKh):

This metric also calculates the percentage of correctly identified joints, but the
difference with PCK is that here the threshold distance is relative to the length
of the head bone link(distance between head and neck joint). A common metric
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used is PCKh@0.5, which specifies the threshold distance as half of the head
bone link.

3. Mean Per Joint Position Error (MPJPE):

This metric is used in 3D pose problems. It is the mean error over all the joint
locations, and the error is the euclidean distance between ground truth and
predicted joint location. Since 3D pose is in an unconstrained space, the ground
truth pose is first aligned with the predicted pose (generally at the pelvis), after
which the error is calculated. The root mentioned in the formula is the pelvis

joint.

MPJPE(%,x) = %\/Z ((Rroot — %) — (Xroot — %;))°

4. Mean Average Precision (mAP):

Datasets like COCO require results to be declared on mAP, which is usually
done for object detection tasks. mAP is the average of P scores(Precision) over
different IoU thresholds, generally from 0.5 to 0.95 at jumps of 0.05. This accu-
racy metric is not strictly used for pose tasks.

5. OKS based Mean Average Precision (mAP):

Object Keypoint Similarity (OKS) is the pose equivalent of IoU in object detec-
tion. It determines the level of similarity between ground truth pose and the
predicted pose. It is scored as follows:

.y
s exp (e )3(0; > 0)
Y.i6(v; > 0)

Here d; is the euclidean distance between the ground truth location and pre-

OKS =

dicted location, v; is the level of visibility of that joint, s is the object scale and
k; is a per keypoint constant that controls falloff.

4.6 Experiments

These experiments are mainly performed by Srijon and have been included in this
report for reference. For fair comparison, we keep the setting of the experiment same
as that of [31]. The seed sequence is kept to be 2 sec, and for short term prediction
we predict upto 400ms, and for longer prediction we predict upto 1 sec. We train for
1000 epochs with a learning rate of 5e-5 and use Adam optimizer. Loss used here
is simple Euclidean loss between predicted pose and ground truth pose. The results
for the same are tabulated in the table below.
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Motion Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ZeroV [[31]] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 097 0.95 0.31 0.67 0.94 1.04

ERD [[18]] 0.93 118 1.59 1.78 127 145 1.66 1.80 1.66 1.95 2.35 242 227 247 2.68 2.76
Lstm3LR [[18]] 0.77 1.00 129 147 0.89 1.09 1.35 146 1.34 1.65 2.04 2.16 1.88 212 2.25 2.23
SRNN [[28]] 0.81 0.94 116 1.30 0.97 114 135 1.46 145 1.68 1.94 2.08 122 149 1.83 1.93
DropAE [[21]] 1.00 111 139 / 1.31 149 1.86 / 0.92 1.03 115 / 111 1.20 1.38 /
Samp-loss [[31]] 0.92 0.98 1.02 1.20 0.98 0.99 1.18 1.31 1.38 1.39 1.56 1.65 1.78 1.80 1.83 1.90
Res-sup [[31]] 0.27 0.46 0.67 0.75 0.23 0.37 0.59 0.73 0.32 0.59 1.01 1.10 0.30 0.67 0.98 1.06
CSM [[29]] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01
TP-RNN [[14]] 0.25 041 0.58 0.65 0.20 0.33 0.53 0.67 0.26 047 0.88 0.90 0.30 0.66 0.96 1.04
QuaterNet [[15]] 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70 0.25 047 0.93 0.90 0.26 0.60 0.85 0.93
AGED [[23]] 0.21 0.35 0.55 0.64 0.18 0.28 0.50 0.63 0.27 043 0.81 0.83 0.26 0.56 0.77 0.84
BiHMP-GAN [[26]] 0.33 0.52 0.63 0.67 0.20 0.33 0.54 0.70 0.26 0.50 0.91 0.86 0.33 0.65 0.91 0.95
Skel-TNet [[24]] 0.31 0.50 0.69 0.76 0.20 0.31 0.53 0.69 0.25 0.50 0.93 0.89 0.30 0.64 0.89 0.98
VGRU-r1 [[22]] 0.34 0.47 0.64 0.72 0.27 0.40 0.64 0.79 0.36 0.61 0.85 0.92 0.46 0.82 0.95 121
Sym-GNN [[30]] 0.17 0.31 0.50 0.60 0.16 0.29 0.48 0.60 0.21 0.40 0.76 0.80 0.21 0.55 0.77 0.85
Pose-GPT 0393 0537 0.636 0.6% | 0356 0443 0604 0736 | 0447 0636 0959 0971 0439  0.731 1.003  1.061

Table 4.1: Comparisons of MAEs between Pose-GPT and state-of-the-art methods
for short-term motion prediction on 4 representative actions of H3.6M(walking,
eating, smoking, discussion)

Motion Walking Eating Smoking Discussion
milliseconds 560 1000 560 1000 560 1000 560 1000
ZeroV [[20]] 1.35 1.32 1.04 1.38 1.02 1.69 141 1.96

ERD [[18]] 2.00 2.38 2.36 241 3.68 3.82 3.47 2.92
Lstm3LR [[18]] 1.81 2.20 249 2.82 3.24 3.42 248 293
SRNN [[28]] 1.90 213 228 2.58 321 3.23 2.39 243
DropAE [[21]] 1.55 1.39 1.76 2.01 1.38 177 1.53 173
Res-sup. [[31]] 093 103 | 095 108 | 125 150 | 143  1.69
CSM [[29]] 0.86 0.92 0.89 124 0.97 1.62 1.44 1.86
TP-RNN [[14]] 0.74 0.77 0.84 1.14 0.98 1.66 1.39 1.74
AGED [[23]] 0.78 0.91 0.86 0.93 1.06 121 1.25 1.30
BiHMP-GAN [[26]] / 0.85 / 1.20 / 111 / 1.77
Skel-TNet [[24]] 0.79 0.83 0.84 1.06 0.98 121 1.19 1.75
Sym-GNN [[30]] 0.75 0.78 0.77 0.88 0.92 1.18 1.17 1.28
Pose-GPT 0.76 0.84 0.89 1.27 1.04 1.62 1.38 1.71

Table 4.2: Comparisons of MAEs across models for longer motions(>400ms) on the
4 representative actions of H3.6M.

While our model does not perform the best at short time intervals(refer to table
4.1), it is competitive at the longer time intervals (refer to table 4.2). On the 4 repre-
sentative actions of Human 3.6M, our results on Walking action is the closest to the
SOTA model on the longer time intervals (560ms and 1000ms). We include results
for the other 11 actions in table 4.3 for short time intervals. The better numbers on
longer intervals could be attributed to the self-attention feature of GPT model that
allows it to generate more plausible poses on the long run.

4.7 Conclusion

This chapter included a set of experiments on the task of future pose prediction. We
achieve competitive results on the longer time intervals actions in Human 3.6M, but
fall short on on the smaller intervals test. The initial hypothesis of self attention to
aid pose prediction over larger time intervals is mildly corroborated by the results,
although further investigation into the attention weights will provide useful insight
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Motion Directions Greeting Phoning Posing

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ZeroV [[20]] 0.39 0.59 0.79 0.89 0.54 0.89 1.30 149 0.64 1.21 1.65 1.83 0.28 0.57 113 1.37
Res-sup [[18]] 0.41 0.64 0.80 0.92 0.57 0.83 145 1.60 0.59 1.06 145 1.60 0.45 0.85 1.34 1.56
CSM [[29]] 0.39 0.60 0.80 0.91 0.51 0.82 1.21 138 0.59 113 151 1.65 0.29 0.60 112 1.37
TP-RNN [[14]] 0.38 0.59 0.75 0.83 0.51 0.86 1.27 1.44 0.57 1.08 1.44 1.59 0.42 0.76 1.29 1.54
AGED [[23]] 0.23 0.39 0.62 0.69 0.54 0.80 1.29 1.45 0.52 0.96 1.22 1.43 0.30 0.58 1.12 1.33

Skel-TNet [[24]] 0.36 0.58 0.77 0.86 0.50 0.84 1.28 1.45 0.58 112 1.52 1.64 0.29 0.62 1.19 1.44
Sym-GNN [[30]] 0.23 0.42 0.57 0.65 0.35 0.60 0.95 1.15 0.48 0.80 1.28 141 0.18 0.45 0.97 120

Pose-GPT 060 080 08 094 | 064 092 128 145 | 074 1.03 158 170 | 074 09 150 177
Motion Purchases Sitting Sitting down Taking photo
ZeroV [[20]] 062 08 119 127 | 040 163 102 118 | 039 074 107 119 | 025 051 079 092
Res-sup [[18]] 058 079 108 115 | 041 068 112 133 | 047 08 137 154 | 028 057 090 1.02
CSM [[29]] 0.63 091 1.19 1.29 0.39 0.61 1.02 118 0.41 0.78 116 131 0.23 0.49 0.88 1.06
TP-RNN [[14]] 0.59 0.82 112 118 0.41 0.66 1.07 122 0.41 0.79 113 127 0.26 0.51 0.80 0.95
AGED [[23]] 0.46 0.78 1.00 1.07 0.41 0.75 1.04 119 0.33 0.61 0.97 1.08 0.23 0.48 0.81 0.95

Skel-TNet [[24]] 0.58 0.84 1.17 1.24 0.40 0.61 1.01 1.15 0.37 0.72 1.05 1.17 0.24 0.47 0.78 0.93
Sym-GNN [[30]] 0.40 0.60 0.97 1.04 0.24 0.41 0.77 0.95 0.28 0.60 0.89 0.99 0.14 0.32 0.53 0.64

Pose-GPT 073 092 124 131 071 091 124 140 | 095 118 143 154 | 044 066 094 105
Motion Waiting Walking Dog Walking Together Average
ZeroV [[20]] 034 067 122 147 | 060 098 136 150 | 033 066 094 099 | 039 077 105 121
Res-sup. [[18]] 032 063 107 126 | 052 089 125 140 | 027 053 074 079 | 040 069 104 118
CSM [[29]] 030 062 109 130 | 059 100 132 144 | 027 052 071 074 | 038 068 101 113
TP-RNN [[14]] 0.30 0.60 1.09 1.28 0.53 0.93 124 1.38 0.23 0.47 0.67 0.71 0.37 0.66 0.99 111
AGED [[23]] 0.25 0.50 1.02 112 0.50 0.82 115 127 0.23 0.42 0.56 0.63 0.33 0.58 0.94 1.01

Skel-TNet [[24]] 0.30 0.63 117 1.40 0.54 0.88 1.20 1.35 0.27 0.53 0.68 0.74 0.36 0.64 0.99 1.02
Sym-GNN [[30]] 0.22 0.48 0.87 1.06 0.42 0.73 1.08 1.22 0.16 0.33 0.50 0.56 0.26 0.49 0.79 0.92
Pose-GPT 0.48 0.72 1.14 131 0.67 0.91 1.24 1.34 0.39 0.58 0.75 0.78 0.59 0.79 1.09 1.20

Table 4.3: Comparisons of MAEs of Pose-GPT vs other methods for short motions
on the remaining 11 actions of H3.6M.

regarding the short time interval results. We leave further experiment and ablation
studies to future works.
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Chapter 5

Self Supervised Pose Estimation

5.1 Introduction

Neural networks benefit from large quantities of labeled training data, i.e Deep
learning methods are always data intensive, and the first step to building a good
model for 3D pose estimation would require large amount of 3D pose annotated
data.This however, has always been lacking. In many settings labeled data is much
harder to come by than unlabeled data, 3D pose annotation requires the use of costly
motion capture devices which makes it less accessible. Due to this, in-the-wild pose-
annotated datasets do not exist, and hence most works in this field make use of 2D
in-the-wild data and 3D datasets like Human3.6M and MPI-INF. These 3D pose an-
notated datasets are set in controlled environments and hence don’t generalize well
to real-world settings.

Self-supervised training is a topic which might lend itself useful to this problem.
In this regime, training is split into 2 halves, pre-training and fine-tuning. In the
pre-training stage, no labelled data is required and the model learns a feature repre-
sentation from the data itself. In the fine-tuning stage, this representation is training
against labelled data for whatever downstream task is applicable for the problem.
Self-supervised training has led to great success in the field of Natural Language
Processing, where benchmarks have been set using magnitudes lesser labelled data.

5.2 Related Work

Self-Supervised Learning: Multiple works in NLP have used this training regime
to success with transformer models [[17], [37], [38]]. With BERT [[17]], a simple pre-
training method allowed it to learn a word representation strong enough for multi-
ple downstream tasks. In speech domain, [12] makes use of self-supervision to learn
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speech representations from thousands of hours of unlabelled data. In the vision do-
main, [40, 25, 35] use self-supervision to learn a geometry aware embedding in their
pre-training stage, and later finetune with limited 3D data. All these methods make
use of multi-view synchronized videos of human motion. Our approach is similar to
these as we don’t use an 2D data, but in contrast we only train on monocular videos
without any annotations, which is abundantly available.

3D Pose Estimation: Most supervised methods utilise both 2D and 3D pose an-
notated data to learn a mapping between 2D pose and 3D pose[[32, 33, 11, 16, 41]].
These generally try to overcome the lack of large scale in-the-wild 3D pose anno-
tated data, by using 2D real world data and learning a complimentary network for
lifting / predicting the depth of the poses. These methods require large amount of 2D
annotated data as well as some 3D annotated data, while we use only small amount
of 3D labels.

Negative mining: When using contrastive loss or its variants like InfoNCE and met-
ric learning, selecting good negatives becomes imperative to learn a good feature
representation. [35] uses the Hardnet framework [34] to perform hard negative min-
ing; essentially it maximises the distance between the closest positive and closest
negative sample in the batch. Since we work with videos, we choose negatives from
the same. We discuss our methods for negative mining in the Our Model section.

5.3 Wav2vec2 model

We utilise self-supervision to learn a pose representation from monocular videos
without annotations, and then perform fine-tuning with labelled data. Our work
is inspired by the success of wav2vec2 ([12]) in the speech domain, where self su-
pervision along with contrastive loss allows it to set a new benchmark in speech
recognition. This paper proved that learning powerful representations from speech
audio alone followed by fine-tuning on transcribed speech can outperform the best
semi-supervised methods while being conceptually simpler. Wav2vec 2.0 masks the
speech input in the latent space and solves a contrastive task defined over a quanti-
zation of the latent representations which are jointly learned.

In here, the pre-training task becomes that of "contrasting" the true latent against
that of multiple negatives, which are basically embeddings representing some other
speech signals. We can use either the poses or the images as input for our model. In
each case, we again have the option of using or abandoning the quantizer. The mod-
els with poses as input with and without a quantizer are demonstrated as follows:
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Figure 5.1: Pose Input with quantizer
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Figure 5.2: Pose Input with no quantizer

5.4 QOur Model

Our model consists of a pretrained Resnet-50 feature encoder which takes as input
raw images and outputs latent representations for each time-step. They are then fed
to a Transformer-Encoder network to build representations capturing information
from the entire sequence. The output of the feature encoder is discretized with a
quantization module to represent the targets in the self-supervised objective.
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Figure 5.3: A picture to demonstrate the working of our PoseBERT model. The im-

ages are passed through a pretrained Resnet-50 feature extractor to obtain the la-
tent representation. The objective of contrastive loss is to differentiate between the
quantizer entry for the anchor image against the negatives sampled from the same.
We try multiple methods of sampling negatives.

Around 30% of the frames in an input video are masked before being passed into

the Transformer-Encoder network. We make use of relative positional embedding,
instead of absolute positional embedding which encodes absolute positions. This is
implemented via a sliding 1-D convolution layer.
We use product quantization to discretize the output of the feature encoder into a
limited set of representations for self-supervised training, just as in [12]. Basically,
product quantization chooses quantized representations from the codebooks and
concatenates them. Although we can have multiple codebooks, we use only one.
Choosing the quantized representation is done via Gumbel softmax, and is fully
differentiable. For a codebook g, and a representation v, the probability of being
selected is as follows:

- exp(loo +ny)/T
S mY jexp(log+m) /T
Here, T is a non-negative temperature, n = —log(—logu) and u are uniform sam-

ples from U(0,1).
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In order to sample negatives from the video, there are multiple options. ? uses

random sampling of negatives from a temporal sequence, however that is acceptable
in speech since speech tokens do not repeat frequently. Hence, the chosen negative
is more likely to represent a different speech signal. However, in our task, random
sampling may not work the same as the set of poses in a video may be limited, and
randomly picking timesteps may lead to similar poses being contrasted against each
other.
Due to this, we need to use something to pick dissimilar pose timesteps. The sim-
plest way to due it would be to use the ground truth 3D pose. But then we would
be using the pose annotations even during pre-training. Another way would be to
use cosine similarity between the frames of a video to pick dissimilar poses. This
assumes that the camera angle is able to capture variation in poses of the subject
in question. This however, requires no pose annotations, and can work monocu-
lar videos. We try both of the negative selection methods and compare them in the
experiments section.

The loss used for training is contrastive loss:

exp(sim(ct, qt)/x)
Yiiexp(sim(ct, §/x))

Ly, = —log

Here, 4 are distractors sampled from the quantizer representations. The c; is the an-
chor embedding, and it needs to identify the true latent quantized representation
from the distractors.

Apart from contrastive loss, we also use a diversity loss which ensures that maxi-
mum entries from the codebook are utilised. The diversity loss is implemented as
follows:

GV — chzlexp(—Zgzlpgv log pgv)
GV
Here, G is number of codebooks, and V stands for number of codebook entries. pgv

L; =

is the probability of selecting the v'h entry from ¢'h codebook.
So the total loss is
L=L,;+01xLy

5.5 Datasets

5.5.1 Human3.6M

We use the Human3.6M dataset for both pre-training and fine-tuning tasks here. This
dataset is ideal for us since it contains a large set of actors(7) performing diverse set
of actions (11 actions). Although these videos are shot using multiple synchronized
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cameras, we don’t make use of multi-view data, and simply rely on a single camera
only. We used masked out images here, as we feel it is necessary for the encoder
network as well as the contextual network to focus on the pose only.

5.5.2 MPI-INF

MPII Human Pose Dataset is a state of the art benchmark for evaluation of artic-
ulated human pose estimation. The dataset includes around 25k images contain-
ing over 40k people with annotated body joints. The images were collected from
YouTube videos, covering daily human activities with complex poses and image ap-
pearances. The dataset covers 410 human activities and each image is provided with

an activity label.

A few other relevant datasets are listed below (all of which haven’t been used).

Dataset 3D Human Pose | Actions Size
NTU True True 56k*100
Human3.6 True False 3.121
TikTok False False 11
MPI-3D HP True False 61
Kinetics False True 400k*100
VidHOI False Hoi 7.3M frames

5.6 Experiments

In this section we consider the retrieval and the pose estimation experiments on both
the H3.6 and MPI-INF Datasets. We consider 4 sampling methods for distractors:

¢ Random sampling

* Pose-Based sampling: Sample the farthest n samples based on the MPJPE with
the anchor.

¢ Distance-Based sampling: Uniform sampling from time steps which are at least
D time steps away from the anchor. (Not yet implemented Yet)

¢ Cosine Similarity Based sampling: Use cosine similarity between image em-
beddings to determine dissimilar images from anchor, from which negatives

are sampled.
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5.6.1 BG Mask

Comparing the Top1 retieval MPJPE scores and the results for fine tuning for pose
estimation with and without BG mask:

Negative Sampling Strategy | With BG Mask? | Top-1 Retrieval Score | Pose-Estimation
(MPJPE in mm) (MPJPE in mm)
GT-pose Yes 259 144
GT-pose No 238 152
Image feature similarity Yes 273 149
Image feature similarity No 241 150
Random-Initialization Yes 231 149
Random-Initialization No 268** 153

Table 5.1: Comparisons of retrieval scores as well as fine-tuning for pose estimation
task across multiple variants of PoseBERT on H3.6 (without quantizer). In GT-Pose,
pose is used for sampling negatives, while in Image feature similarity, the cosine-
similarity between frames is used.

We see that with background mask, retrieval scores are much better for each sam-
pling strategy. (**except for the random initialization, experiment to be repeated).
But for pose-estimation, we see that the our immediate pretraining (with contrastive
loss) doesn’t seem to help much. We also see that that random initialization yields
better results after pretraining with contrastive loss. This might be because either the
contrastive loss is not a representative of the retrieval objective or maybe because of
some bad architecture/bug.

To verify if contrastive loss is not the right representative, we conducted another
supervised experiment with just pose-based loss (no contrastive or diversity loss). A
fresh BERT model was created and no pretraining was done. In this, the validation
MPJPE for pose estimation came out to be 160.64mm which is quite high compared
to the ones mentioned in 5.1.

For improving it’s performance, we added a residual block and thus skipped
the connection. We got an MPJPE of 164.06mm for the fine tuning task, which is
not an improvement compared to 164.64. This might be due to overfitting owing
to the lots of extra parameters introduced (embedding size=2048* num of joints=16*
dimensions=3). More parameterization turned out to be ineffective. This thread of
experiments need to be looked into, in the future so as to understand the unexpec-
tated random-initialization scores.
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5.6.2 Quantizer

In order to evaluate the contribution of the quantizer, we run experiments both with
and without the it. Same frame from multiple views are considered positives while
unrelated frames are negatives. When the quantizer is not present, the negatives are
sampled from the output embeddings of the PoseBERT model.

Evaluation:

Test the embeddings from the pre-training stage by using the retrieval metric.

Construct a database of train video embeddings

Retrieve the closest train embedding for each test embedding

Compare their MPJPE scores and report fine-tuning results on the pose estima-
tion tasks 5.2.

Our PoseBERT model consists of 4 layers of transformer-encoder layers, each of them
having 4 attention heads and embedding dimension 2048. We training it using Adam
optimizer, learning rate of le-4 with Ir decay. We use 1 codebook in the quantizer
experiments, with 1024 codebook entries.

Negative Sampling Strategy | Quantizer Used | Retrieval Score | Pose-Estimation
(MPJPE) (MPJPE)
GT-pose Yes 277 148
GT-pose No 259 144
Cosine-sim Yes 289 149
Cosine-sim No 273 149
Random No 231 149

Table 5.2: Comparisons of retrieval scores as well as fine-tuning for pose estimation
task across multiple variants of PoseBERT on H3.6 (with BG mask). In GT-Pose,
pose is used for sampling negatives, while in Cosine-sim, the cosine-similarity be-

tween frames is used

As we can see, the retrieval scores for our models are quite high. Also, we notice
that the experiments using quantizer tend to perform worse than their counterparts
without it. More importantly, we observe that the choice of pre-training does not af-
fect the final metric of the fine-tuning task. The pose estimation results are very close
to each other, irrespective of the choice of negative sampling of the use of quantizer.
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5.6.3 Multiview Setting

In order to be comparable with other papers in the same space, we also apply our
method to multi-view setting. In this case, the positive for the anchor is selected
from another view of the same video. Since we work with Human 3.6M dataset,
multiple views of the same video are available. The architecture for the same is
given in Figure 5.4.

Contextualized
Representation

\
1\Positi\re

Multi-view PoseBERT h

L bl ‘ T
Latent ﬁ ‘ ﬁ D
Representation

ResNet + Layer Norm

Figure 5.4: Our Multi-view PoseBERT model. Each batch contains multiple views

of the same video. While the negatives are still being sampled from the same video,
the positive sample is from another view of the anchor frame.

However, with multi-view information, our retrieval results actually get even
worse (200mm with transformer and 233mm without transformer for pose-estimation
task). We figure that the retrieval metric is not the ideal metric for evaluation in our
case, since for 2 contextualized embeddings to be similar, not only do the both video
sequences represented by the embedding need to have similar poses, they also need
to have them in the same sequence. Now that is hard to achieve in H3.6M, as here
the actors have a fair amount of leeway in acting out the actions. Hence, one actor’s
sequence of poses does not exactly match another actor, even for the same action. It
is due to this reason that we feel the retreival MPJPE numbers are quite high.
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5.64 MPI-Inf

In the retrieval experiment, given the pose embeddings, we need to retrieve the clos-
est pose from the dataset.

Dataset | Input | Sampling Strategy | Retrieval Score
(MPJPE) (MPJPE)
MPI Pose | Uniform Sampling 152
H3.6 Pose | Uniform Sampling 135
MPI | Image | GT-pose based 332
H3.6 | Image | GT-posebased 259
MPI | Image | Cosine-similarity 333
H3.6 | Image | Cosine-similarity 273

Table 5.3: Comparisons of retrieval scores on Mpi-inf and H3.6 dataset

We see that MPI gives worse results as compared to H3.6 in case of Image as well
as Pose inputs. Apart from this, not using the quantizer again gives better results on
MPI dataset.

5.7 Conculsion

In this chapter we performed self-supervised learning of poses from monocular
videos. We tested the embeddings from the contrastive loss based pre-training, fol-
lowed by fine-tuning on pose estimation task. Quantization as well as multi-tasking
seems to be backfiring. Therefore we need to investigate the initialization of the GT-
pose based sampling with Image similarity based sampling’s weights and vice-versa
to understand the reason behind. Apart from this, using a BG mask seems to help
for the retrieval scores. Also, we concluded that our immediate pretraining doesn’t
seem to help much in pose estimation. Apart from this we observed that Random
Initialization yields better results after pretraining with contrastive loss. The reason
behind the un-expected retrieval scores needs to be looked into, in the future.
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Chapter 6

Conclusion and Future Scope

The first part of this report was on Use of Al and Video Analytics for Anomaly
Detection in Proctored Videos. In an attempt to detect anomalous behaviours in
online exams and implement a way of Automated Proctoring, we tried to design an
auto-encoder model based on human pose features which would give an idea how
anomalous the video clip is. We collected the Video datasets required, and after the
required preprocessing, summarized the videos, detected the poses in frames, and
finally trained an autoencoder using the labels. The results came out to be pretty
good with reconstruction errors as low as 10-3.

The next part of this report mainly contains a comprehensive summary of the
different approaches taken towards Human Pose Estimation, along with recent de-
velopments using self-supervision. We did multiple experiments on Future pose
prediction and acheived competitive results on the longer time intervals actions in
Human 3.6M, but fell short on the smaller intervals test. Coming to self-supervised
pose estimation from monocular videos, we realized that quantization as well as
multi-tasking seems to be back firing, which needs to be looked into, in the future.
We also concluded that our immediate pretraining doesn’t seem to help much in
pose estimation, which again through modification in experiments needs to be taken
care of. While neither of the evaluations have led to State-of-the-Art numbers, it is
possible to take our model performing relatively well for a particular task, and add
a few modifications to it to enhance its performance.
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Appendix A

Video Summarization Techniques
(BTP D)

The goal of Video summarization is to identify a small number of keyframes or video
segments that contain as much information as possible of the original video. This
step was included later as we noticed that pose estimation takes a lot of time and was
a bottleneck for the entire process. Thus this step would summarize the entire video
and give us a subset of frames which we would be interested in and which would
contain a gist of the entire video i.e while containing as much info as possible. As
the number of frames is decreased to a great extent, the pose estimation step would
be a bit faster.

A.1 Asynchronous summarization

The entire video is available beforehand and any frame can be accessed in any order
whatsoever. It’s offline in nature and the summarization of the proctoring videos
is done after the entire video is stored in a local machine. Previous work on asyn-

chronous Video summarization includes:

¢ Video Maximal Marginal Relevance (Video-MMR) [1]

¢ Standard Greedy Algorithm

A.1.1 Video-MMR

If the summary is say S and the entire set of video frames is represented by V, then a
distance measure can be introduced to quantify the relation between S and V or how
well S represents V.

If fj is a frame belonging to V, we iterate over all frames g belonging to S, to
maximise the similarity between fj and g. This frame g would be closest to fj and
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then the 1 - their similarity would give some kind of a measure of the distance of fj
from g. Extending it to the entire set, and averaging over all frames fj belonging to
V, we get d(5,V). The best Summary would be the one that minimizes this quantity

In the proctoring scenario, our intuition is to construct the summary such that
its visually similar to the content of the videos but at the same time it differs from
the frames which are already selected in S. Following our intuition, we define a new
measure Video-MR(fi) given by

Video-MR(f;) = A Sim,(f;, V\S)
— (1= A) max Sim,(f;,g)
gEs

Maximising Video-mr(fi) would mean maximising the similarity between fi and
the frames not yet selected while minimising the similarity between fi and the ones
already selected. Therefore at every step, we chose fi which maximises this quantity.
We can make a set S of some fixed cardinality by following the update rule shown
here.

Sk41 = S U argmax
FIEVAS)

A Sim, (f;, V\Si)
(_ (1-=2) rric{xSi'rrtz(f-,y))
gE5

where Sim1 is a similarity measure between 2 frames while sim?2 is that for a
frame and a set of frames. Sim2 can be considered as an average of simls between
the frame being considered and every other frame in the set of frames. This average
again can be of 2 types. Arithmetic mean or geometric mean and we will consider
both the variants later on while testing their performance.

So the exact steps to be followed are shown here.

¢ 51 is initialised with a frame that has the best average similarity with all the
other frames in the set. This frame would be that 1 frame which would be the
most similar to the visual content of the video

fi = arg r?}%—xf (l_l}'zl SEm(ﬁ-fj))E
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e We then find the frame which maximises Video-MR(fi), i.e is most similar to
the rest of the video frames and most dissimilar to the frames already selected,

I;lSI-”H(fi-V\Sk—]J )

fi = arg maxgeps, . (— (1—-A4) TEIL'GX Sim, (fi, g)
AC3 k-1

¢ Set Sis updated is with f, and this continues till the cardinality constraint, size
of set S = k is reached.

Sk = Si—1 U {fic ).

Performance:

* AM vs GM variant: AM video mmr performed better than the GM variant,
i.e the arithmetic mean would be a better way of getting sim2, the similarity
between the frame and a given set of frames as we can see from the SRC (Sum-
mary Reference Comparison) graphs, Figure A.1

The ds of AM are comparatively lower than that of GM as they start from some-
what around 0.6 and end at 0.45 while the GM d values start from 0.65 and end
at approx 0.5.

¢ Tradeoff due to A : The lambda term decides the trade off between the rele-
vance i.e the similarity to visual content and the novelty i.e how unusual or
abnormal the frame is compared to the ones already selected in the summary.
This in fact also can be used to detect anomalies as the ones with an anomaly
are the ones with abnormal behavior and high reconstruction losses. Thus for
the anomaly detection problem keeping the lambda low would be beneficial if
we are interested in choosing just the abnormal frames. In the paper, for the
video dataset which they considered, the best performance was obtained for
lambda=0.7 as can be seen in Figure A.1 and here the performance comparison
is done wrt human evaluation.

¢ Comparison with standard kmeans algorithm: Kmeans algorithm clusters the
similar scenes and then chooses the cluster centres. We have a few advantages
of video mmr compared to this:

— Stability: more stable as there are no randomised initial centres
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Figure A.1: Summary distance vs Summary size

- Dynamical Summarization: we can summarize dynamically by maximis-
ing the similarity of the frame to be chosen with the remaining frames of
the video while minimising similarity with the ones already selected. This
can’t be done by Kmeans algo as the k centres are kinda fixed and the en-

tire algo needs to be run again in case new frames are given.

Quality wrt Human choice: QC here is the summary quality of a particular
algo wrt human choice. As we can see the summary subset, got from video

mmr, is much closer to human choice as compared to kmeans.
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A.1.2 Standard Greedy Algorithm

Lots of video summarization techniques use Online submodular maximization. Se-
lecting the best summary subset can be considered as selecting a subset of data el-
ements optimizing a utility function that quantifies “representativeness” of the se-
lected set. These objective functions satisfy submodularity, an intuitive notion of di-
minishing returns, stating that selecting any given element earlier helps more than
selecting it later. Data summarization requires maximizing submodular set functions
subject to the cardinality constraint i.e the size of the summary is fixed.

If we define a monotonic submodular set function f: 2°’N — R where N is the
finite total number of frames. Therefore if V is the entire set of frames in the video,
the domain of f is the powerset of V. For every possible keyframe subset S C V,
f(S) quantifies the utility of set S, i.e how well S represents V. This equation here
quantifies the increase in utility by adding e to set S and this is called the marginal
utitilty of e wrt S.

AV (C

S) = f(SU{e}) = f(S)

Observe that f is monotone implies Af >0 for all e and S. i.e adding any frame to
the subset S is gonna increase the utility. And fis submodular implies if A is a subset
of B and e doesn’t belong to A and B, Adding an element to A is more helpful than
adding it to B.

Ay (e

A) > Ay(e|B).

Algorithm
Greedy algorithm starts with the empty set, and iteratively locates the element with
maximal marginal benefit, i.e at iteration i This requires random access to the data.
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Hence, while it can easily be applied if the data fits in the main memory, it is im-
practical if the data is arriving over time at a fast pace as we won’t be knowing the
marginal utility of those frames in comparison to the frames we have already seen.

Performance
If k is the size of the summary needed and n is the total number of frames in the
video

¢ O(k) memory
¢ O(nk) computation time

* 1-1/e approximation to the optimal solution

A.2 Synchronous summarzation

Here, unlike the asynchronous setting, we have an unpredictable sequence of frames
streaming in and we get 1 frame in each iteration. It’s online and the frames are
selected or rejected as soon as they enter and the subset of selected frames keeps
getting updated in every iteration. Relevant previous work on synchronous Video
summarization includes:

¢ Stream Greedy Algorithm
* Preemption Streaming

¢ Sieve Streaming [2]

A.21 Stream Greedy

Here, too like in the standard greedy algorithm, we start with the empty set and for
the first k iterations, we store all the incoming frames.

For iterations after k, we check whether switching the incoming frame with one
in the already selected subset will increase the value of the utility function f by more
than some relative threshold. If so a, we switch it with the one that maximizes the
utility. Otherwise the summary remains the same.
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Algorithm 3: Greedy with Theshold()

1 Let S5y « &.
2 foreach element w; revealed do
3 it ¢ < k then
4 Let 5; « S;_; + u;.
5 else
6 Let u! be the element of S;_; maximizing f(S;_; +u; — ul).
T if f(Si—1 +uw—u:) — f(5:-1) = e f(Si—1)/k then
8 L Let §; «— 5, _; +u; — u:.
9 else
10 Let S; + 5;_1.
Performance

If k is the size of the summary needed
¢ O(k) memory
* O(k) queries per frame

* 1-1/¢e approximation to the optimal solution where ¢ is c/k.

A.2.2 Preemption Streaming

This is one of the most simple algorithms for choosing the frames coming through
an online stream but is computationally very expensive. It allows the algorithm to
reject (preempt) previously accepted elements.

Consider the multilinear extension of this function F:[0,1]'N — R and say, for
every N dimensional binary vector x, F(x) gives a real valued positive number corre-
sponding to how well choosing the frames chosen according to x would approximate
the entire video. “1” at a particular dimension i in the vector x implies that the ith
frame is chosen in the keyframe subset. N here is the total number of frames in the
video

For making sure the uth frame is selected in the key frames subset, consider a N
dimensional vector u, such that all values except for the uth coordinate are 0s. Now
(x V u), the coordinate-wise union of x and u would have 1 as the uth coordinate and
hence would surely have u as one of the selected frames.

The vector N is say a N-dimensional vector with 1s at each coordinate, then for
the vector (N-u), all values except for the uth coordinate are 1s. Therefore (x A (N-
u)), the coordinate wise intersection of x and (N-u) would surely have a 0 at the uth
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coordinate.
Thus the marginal utility of adding frame u can be given by

Flz)=F(zVu)—F(zN ('\ u))

Algorithm

For every frame ui received at the ith iteration, we define a threshold 6i on the
marginal benefit. If Ni is the set of all frames received till now, we define the subset
Si containing the frames with marginal benefit more than 6i and the other frames are
rejected.

This way if i is > than 0i-1, previously selected frames can be rejected too and that
explains the term "pre-emption".

Algorithm 1: Marginal Choice

1 foreach clement u; revealed do

2 Choose a uniformly random threshold #; € [0, 1].
3 Let N; « {uy,usz,...,u;}.

1 Let S; + {u; € Ni | 8..F(8; - N;) = 0},

Performance
¢ O(k) memory and O(k) queries per frame

* 1/4 approximation to the optimal solution

A.2.3 Sieve Streaming

This final optimum algorithm requires only a single pass through the data, and mem-
ory independent of data size. The challenge in this setting is that, when we receive
the next element from the stream, we must immediately decide whether it has “suf-
ficient” marginal value. The approach builds on three key ideas:

* a way of knowing the utility value of the optimum summary subset and using
it to make a threshold for the marginal values of the incoming frames

¢ As optimum utility value is difficult to guess, we later on guess the threshold

based on the maximum marginal value of a singleton element or a single frame

¢ lazily running the algorithm for different thresholds when the maximum marginal
utility observed till now keeps getting updated

43



As our final algorithm is a careful mixture of these ideas, we showcase each of them
by making certain assumptions and then removing each assumption to get the final
algorithm.

A.23.1 Assumptionl: Knowing OPT helps

OPT is the maximum utility value of the function for any subset of size k. Greedy
algorithms work because at every iteration, an element is identified and it reduces
the “gap” to the optimal solution by a significant amount.

We can easily see that if Si is the subset selected by following the greedy algo i.e
if Si is obtained using the following update rule,

SI.,: e SI.,:_]_ L {ﬂ[‘g ﬂlf:'l{#:’_{ &I(e|5.,;_l:]}_
eV

for the next element ei+1 to be added to Si, the marginal benefit is > (OPT-
£(Si))/ (k-|Si|) as marginal benefits of the chosen frames keeps on diminishing.

Our challenge in sieve streaming is to immediately decide whether an incoming
frame has sufficient marginal value. This will require us to compare it to OPT in
some way which gives the intuition that knowing OPT should help. If we follow
this intuition, for the first element to be chosen, we have the threshold for marginal
benefit as OPT/k. This however won’t work if there is a single element just above
OPT/k at the end of the series while the rest of the elements with marginal value just
below OPT/k appear towards the beginning of the stream. Our algorithm would
have then rejected these elements with marginal value just below OPT/k and can
never get their value.

Therefore instead of keeping the threshold as OPT/k, we keep it as *OPT/k and
chose a suitable B. Say =Y.

Now suppose we know OPT uptil a constant factor 0 < a < 1;i.e we know v stv
€ [a*OPT, OPT]. Then at the ith iteration, if Si is the selected subset and |Si| < k, the
algorithm adds a given new frame only if its marginal value is > (v/2-f(51))/(k-|Si|)
(as beta='%, the v/2 factor appears)

Algorithm 1 SIEVE-STREAMING-KNOW-OPT-VAL
Input: v such that OPT > v > o OPT

1: S5=10

2: fori=1ton do .

3 if As(es | S) = rf |'!\.'r|'\' and |S.| < k then

4 S:=SuU{e}

5 return S
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A.2.3.2 Assumption2: Knowing max f(e) suffices

The second step is to assume that we know m, ie the maximum utility value of the
function for just a single element or frame. Knowing OPT is difficult as we don’t
have the solution beforehand. In order to get a very crude estimate on OPT, it is
enough to know the maximum value of any singleton element m = max(f(e), e € V
We observe m > OPT > k*m. (Reason: Greedy algorithm requires us to pick frames
with the highest marginal values in descending order. As the first maximum value
is m, the total sum for the entire summary would always be less than k*m)
Now if we consider the set

O={1+¢eicZm<(1+¢) <k-m}.

For atleast one of the thresholds v € O, v would be a good estimate of OPT, i.e (1-
€)*OPT > v > OPT. So, we could run the previous Algorithm 1 once for each value
v € O, requiring multiple passes over the data and then output the best solution
obtained. Since the algorithm does not know which value v is a good estimate for
OPT, it simulates Algorithm 1 for each of these values v € O.

The size of set O is |O| = O((log k)/€), so we need that many passes of Algol.

Algorithm 2 SIEVE-STREAMING-KNOW-MAX-VAL
Input: m = max.ev f({e})

1: O={(1+ i €eZm< 1+ <k -m}

2: For eachv € 0,5, :=10

3: fori =1 ton do

4: for v € O do .

5: if Ag(ei | Sv) > Y2555 and |S.| < k then
6: Sy 1= 8 15}

7: return argmax,.o f(Sv)

Obtaining “m” of all singletons still requires one pass over the full data set, and
thus this results in a two-pass algorithm, one for finding m and the other for selecting
the frames and running algo1 for every possible v € O. But our final algo should need
just one pass over the incoming stream data.

A.2.3.3 Lazy updates: The final Algorithm

One idea for reducing the previous algorithm to a one-pass algorithm is to maintain
an auxiliary variable m which holds the current maximum singleton element after
observing each incoming element and lazily instantiate the thresholds v € O defined
previously for this m.
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This however won’t work as m would be an underestimate of the actual value
of max(f(e)), and hence v chosen above could be much smaller than real OPT. This
implies v/2k, the threshold marginal value for choosing the first frame would be
small and with fixed cardinality, only the first few frames would get selected leaving
the others unattended. Therefore, we increase the range of v to

v=(1+€'m<(l4+¢' <2 -k-m.

Thus the final algo maintains an auxiliary variable m that holds the current maxi-
mum singleton element after observing each element ei . Whenever m gets updated,
the algorithm lazily instantiates the set Oi and deletes all thresholds outside Oi or all
vs ¢ Oi.

We then consider Sv for each v which keeps getting updated with ei+1 in the
ith iteration if the marginal value of ei+1 is > (v/2-f(Svi))/(k-|Svi|) and |Svi| < k.
Finally, we output the best solution among Svs for different vs € final Oi.

Algorithm 3 SIEVE-STREAMING
1: O={(1+¢€)'|i e Z}

2: For each v € O, S, := 0 (maintain the sets only for the
necessary v's lazily)

3 m:=10

4: for i =1 ton do

5.  m:=max(m, f({e:}))

6: Oi={(1+e)m<(1+€)f <2 -k-m}

T Delete all S, such that v ¢ O;.

B for v € O; do

9: if As(e; | Sy) > —’%"l—l and |S,| < k then
J.(]: a.()Ttl — A(,T-J_' L {(:;}

11: return argnme,Eo”f(.‘,‘.,_.)

Performance

* one pass over the entire dataset and O(klogk/€) memory

* (%-€) approximation to OPT

* O(nlogk/e€) complexity whereas classical greedy had O(nk) complexity
Limitations

¢ f depends on the entire datastream V

* |S| can be smaller than k
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To overcome the above limitations, we define the evaluation of the utility func-
tion f restricted to a subset W C V and not the entire V

f(8) = 1(S),  fw(S) = ﬁ A

ec W

as long as W is large enough and its elements are randomly chosen, the value of
the empirical mean fw(S) will be a very good approximation of the true mean £(S).

ProrosiTioN 6.1. Assume that all of f.(S) are bounded
and w.l.o.g. |fe(S)] < 1. Moreover, let W be uniformly
sampled from V. Then by Hoeffding's inequality we have

iy
Pr(|fw (S) — £(S)] > €) < 2exp ("‘; € ) ‘

e # ke . . s
Ihere are at most |V|" sets of size at most k. Hence, in
order to have the RHS < 4 for any set S of size at most k
we simply (using the union bound) need to ensure
2log(2/6) + 2klog(|V])
£2
£

W= - (8)

Also, this W acts as a reservoir and can be used to fill up |S| in case it’s smaller
than k. Therefore to get the subset W, we just need to sample uniformly at random
from a data stream once and then use our stream algo, resulting in a 2-pass algorithm
but without the previous limitations.

Algorithm 4 SIEVE-STREAMING 4+ Reservoir Sampling

1: Go through the data and find a reservoir W of size :|
2: Run SIEVE-STREAMING by only evaluating fw(-)

Competitive Analysis: The performance of each algorithm can be done by compar-
ing them to an optimal offline algorithm that can view the sequence of frames in
advance. Listing down the results of the relevant algorithms for comparison:

Algorithm Approxu'natmn Memory Queries Stream  Reference

Ratio per Element
Greedy 1—1/exp(1) O(K) (1) X (Nemhauser and others 1978)
StreamGreedy 1/2—¢ O (K) O(K) X (Gomes and Kranse 2010)
PreemptionStreaming 1/4 O (K) O(K) v (Buchbinder, Feldman, and Schwartz 2019)
Sieve-Streaming 1/2—¢ O(KlogK/e) OlogK/z) v (Badanidiyuru et al. 2014)
Sieve-Streaming++ 1/2—¢ O(K /<) O(log K/<) v (Kazemi et al. 2019)
Salsa 1/2—¢ O(KlogK/e) OlogK/e) v (Norouzi-Fard et al. 2018a)

1/2 —¢
ThreeSieves i O(K) (1) v this paper

with prob. (1 — n)K
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