
16811: Mathematical Fundamentals for Robotics

Neural Radiance Fields for 6D Pose Estimation

Team members: Abhishek Tandon (atandon2), Poorvi Hebbar (phebbar), Siva
Ramakrishnan (sivarams)

Introduction

This project looks into Neural Radiance Fields (NeRF) for 6D pose
estimation. Since its introduction in 2020, Neural Radiance Fields
(NeRF)[9] learned image priors from large-scale image sets. NeRFs
have found uses in robotics applications for visuomotor control and
vision-only robot navigation (with a pre-mapped NERF environment).
The end application analyzed here concerns how NeRFs can be employed
for 6D pose estimation. 6D pose estimation is the task of detecting
the location and orientation of an object given a 2D image of the
object.

This project first looks into 6D Pose Estimation and its standard
methods such as the Perspective-n-Point (PnP) method and its
limitations. It then discusses how deep learning models are used in
conjunction with PnP.

The project then explores NeRFs to form a thorough understanding of
the topic and then evaluates the method Inverted Neural Radiance
Fields (iNeRF) which is used for pose estimation.

6D Pose Estimation

6D Pose Estimation is the task of predicting the orientation and
location of an object given an image taken from a camera. The
knowledge about the object pose then allows the robot to reason about
the object in the 3D world as the camera location is known with
respect to the world center. Using the predicted pose, a robot arm
can place its gripper accordingly and successfully manipulate the
object. Pose Estimation also finds use in planning tasks such as
planning robot motion around objects and to power augmented
applications.

Formal Problem Setup

Formally the problem setup consists of:

1. 3D Object
2. 2D image of the object

This is given through 2D points on the image matched to 3D points on
object. These are known as 2D-3D correspondences.

The task is to estimate the camera matrix P for which we have these
2D-3D correspondences.

Figure 1: Pose Estimation equation [9]

Firgure 2: Pose Estimation problem [9]

Method: Perspective-n-Point

Given the correspondences we can write the equation in matrix form.

Figure 3: Matrix form of 2D-3D correspondence [9]

Using linear algebra, we can manipulate the above matrix to give the
below equations:

Figure 4: Constraint Equations (p1.T, p2.T, p3.T are the first, second and third row
of the P matrix) [9]

Since the camera matrix P is orthogonal, we can apply those
constraints to the unknowns. Since each pont gives 2 equations, we
now need only 3 correspondences to determine all the unknowns. This
method is known as the Perspective - 3 - Point. (P3P) [8]

Using the n correspondences in the general case of
Perspective-n-Point method, we can form the below matrix and then
apply SVD to find the unknowns. The solutions is the eigenvector
corresponding to the smallest eigenvector.

Figure 5: Matrix format of system of equations [9]

The PnP method works well and is able to find good estimate the
object pose but is limited on its dependency for perfect 2D-3D
correspondences. RANSAC is used in conjunction with PnP to be robust
to the noise in the correspondences. The standard implementations of
PnP also use Levenberg-Marquadt (LM) optimization to further tune the
P matrix found from PnP.

Finding correspondeces

Perspective-n-Point method uses 2D-3D correspondences to estimate the
object pose, but these correspondences also need to be determined.
This is the blind PnP problem where the correspondences are unknown.
Below are some methods to find the correspondences:

1. 2D-2D correspondences

In this method, first the 3D model is projected to an image and
then correspondences are found between the two images. These
2D-2D correspondences are then mapped back to the 3D model.

Figure 6: 2D-2D-projection-3D [5]

2. Using Deep Learning Model

In this case the strategy is to train a model to output the
correspondences. These models take into account the 3D model of
the object and the 2D image and directly regress for the
correspondences.

After finding the correspondences, these methods apply PnP with
RANSAC.

Results

The PnP method was applied usign OpenCV implementation on the
LineMOD[7] synthetic dataset. The correspondences were found using
PVNet[6] deep neural network.

Figure 7: result figure (green is the ground truth box, blue is the predicted box)

As seen in the above figure the method works well even in cases of
heavy occlusion and when there are multiple objects in the scene.

Neural Radiance Fields (NeRF)

What is NeRF?

NeRF stands for Neural Radiance Fields. Let’s understand a few
concepts before understanding how exactly a NeRF works [8]:

Rendering: process of creating an image from a 3D model
containing features such as textures, shading, shadows,
lighting, and viewpoint. The role of the rendering engine is to
process these features to create a realistic image. There are
main methods being used for rendering:

1) Rasterization: projects objects geometrically based on
information in the model, without optical effects

2) Ray casting: calculates an image from a specific point of
view using basic optical laws of reflection

3) Ray tracing: uses Monte Carlo techniques to achieve a
realistic image in a far shorter time

Volume rendering: creates a 2D projection of a 3D discretely
sampled dataset. Obtains RGBa for every voxel in space in a
particular ray direction and gets a RGB color for the
corresponding pixel in 2D image.

View synthesis: creates a 3D view from a series of 2D images by
predicting the depth given different perspectives of an object

NeRF: A neural radiance field (NeRF) is a fully-connected neural
network that can generate novel views of complex 3D scenes,

https://arxiv.org/abs/2003.08934

based on a partial set of 2D images. It takes a set of input
images of a scene and renders the complete scene by
interpolating between the scenes. Interpolation between 2D scenes
is done using a Continuous Volumetric Scene function F: (x,y,z,θ,Φ)
-> (r,g,b,a). We try to optimize this continuous volumetric scene
function which can be further used to produce novel views.

The Continuous volumetric scene function can be viewed as 5D
vector valued function which takes input as a 3D location x =
(x; y; z) and 2D viewing direction (θ; Φ) and outputs an emitted
color c = (r; g; b) and volume density (α).

Briefly, to understand how a NeRF works: We first generate a
sampled set of 3D points—by marching camera rays through the
scene. We then produce an output set of densities and colors—by
inputting your sampled points with their corresponding 2D
viewing directions into the neural network. Finally, we
accumulate our densities and colors into a 2D image—by using
classical volume rendering techniques. This overview of NerF can
be better understood in the following detailed steps:

1) Nerf Scene Representation:
Say d is a 3D cartesian unit vector representing the
viewing direction. We approximate a continuous 5D scene
representation with an MLP network F: (x; d) -> (c; a) and
optimize its weights to map from each input 5D coordinate to
its corresponding volume density and directional emitted
color. We observe that the volume density, a, is a function
of only the location x, while the RGB color c is predicted
as a function of both location and viewing direction.

MLP F first processes the input 3D coordinate x with 8
fully-connected layers (using ReLU activations and 256
channels per layer), and outputs and a 256-dimensional
feature vector. This feature vector is then concatenated
with the camera ray's viewing direction and passed to one
additional fully-connected layer (using a ReLU activation
and 128 channels) that outputs the view-dependent RGB
color. Interpolation between the given set of images is
done using this continuous volumetric scene function. If we
consider a voxel at (x,y,z) and the viewing ray direction

as (theta,phi) then the F function here basically maps
(x,y,z,theta,phi) to (RGB sigma) of the voxel where sigma
is volume density.

2) Volume Rendering with radiance fields
Once we have this RGB sigma for every voxel in a ray
direction, we can get RGB of the 2D corresponding pixel.
This color rendering basically creates a 2D projection of a
3D model.
Estimated color C(r) of camera ray r(t) = o + td with near
and far bounds tn and tf is:

We use a stratified sampling approach to estimate this
integral where we partition [tn; tf] into N evenly-spaced
bins and then draw one sample uniformly at random from
within each bin:

Where delta_i=ti+1 - ti, distance between adjacent samples

So overall, we synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays, feeding
those locations into an MLP to produce a color and volume
density, and using volume rendering techniques to composite
these values into an image. This rendering function is
differentiable, so we can optimize our scene representation
by minimizing the residual between synthesized and ground
truth observed images.

3) Optimizing a NERF
There are 2 main ways to optimize the NeRF that the
original paper presents:

1. Positional encoding
Deep networks are biased towards learning low frequencies.
Therefore the network F directly operating on (x,y,z,θ,Φ)
input coordinates results in rendering that performs poorly
at representing high-frequency variation in color and
geometry. Also, mapping the inputs to a higher dimensional
space using high frequency functions before passing them to
the network enables better fitting of data that contains
high frequency variation. Positional encoding basically
maps the inputs to a higher dimensional space so that
minute details with high frequency variation in color and
geometry are captured. Therefore, we find improved
performance by reformulating F_theta as (F_theta’,gamma)
where gamma is the mapping from R to a higher dimensional
space R^2L and F_theta’ is still an MLP.

2. Hierarchical volume sampling
The color rendering faces one major backfoot in color
rendering, i.e Free space and occluded regions that do not
contribute to the rendered image are still sampled
repeatedly. We can use hierarchical representation that
increases rendering efficiency by allocating samples
proportionally to their expected effect on the final
rendering. Instead of just using a single network to
represent the scene, we simultaneously optimize two
networks: one “coarse" and one “fine". We first sample a
set of Nc locations using stratified sampling, and evaluate
the “coarse" network at these locations. Given the output

of this “coarse" network, we then produce a more informed
sampling of points along each ray where samples are biased
towards the relevant parts of the volume. We now sample a
second set of Nf locations from this distribution using
inverse transform sampling, evaluate our “fine" network at
the union of the first and second set of samples, and
compute the final rendered color of the ray ^ Cf ® using
all Nc+Nf samples.

For volume sampling, let’s take an example. Suppose we have
a laptop in front of us. We can say that the air between us
and the laptop and the stuff behind the laptop screen are
in no way contributing to the color of a 2D pixel in the
laptop’s image. To optimize, we therefore sample course
points and then some fine points in the regions that matter
the most. This 2 step sampling to ignore free space and
occluded regions is called Hierarchical Volume sampling.

4) Implementation details
We optimize a separate neural continuous volume
representation network for each scene. This requires only a
dataset of captured RGB images of the scene, the
corresponding camera poses and intrinsic parameters, and
scene bounds (assumed to be given). At each optimization
iteration, we randomly sample a batch of camera rays from
the set of all pixels in the dataset, and then follow the
hierarchical sampling to query Nc samples from the coarse
network and Nc + Nf samples from the  ne network. We then
use the volume rendering procedure to render the color of
each ray from both sets of samples. Our loss is simply the
total squared error between the rendered and true pixel
colors for both the coarse and  ne renderings:

where R is the set of rays in each batch, and C(r), C^c(r),
and C^f(r) are the ground truth, coarse volume predicted,
and fine volume predicted RGB colors for ray r

respectively. Note that even though the final rendering
comes from C^f(r), we also minimize the loss of C^c(r) so
that the weight distribution from the coarse network can be
used to allocate samples in the fine network.

An overview of our neural radiance field scene representation
and differentiable rendering procedure can be seen here:

We can observe from the following result on the LLFF dataset
that the 3D model captures the intricate details very well, and
can also render novel views very efficiently.

iNeRF: Inverting Neural Radiance Fields for Pose Estimation

Overview

Now that we understand how NeRF learns the 3D scene representation,
we’ll look at leveraging Inverse NeRFs for direct Pose Estimation
instead of using 3d-2d correspondences. iNeRF takes 3 inputs: an
observed image, an initial estimate of the pose (identity matrix),
and a NeRF model representing a 3D scene or an object in the image.
Different from NeRF, we start from an estimated initial camera pose
and iteratively refine the pose (through gradient descent) following
the similar rendering procedure as before to compute the loss with
the observed image. iNeRF instead propogates the gradients to the
estimated pose. After this is completed, iNeRF is able to recover the
correct camera poses by aligning the rendered and observed images. In
the following sub-sections, we’ll cover the iNeRF formulation and how
to leverage them for pose estimation followed by the current
approach’s limitations and scope.

Leveraging Neural 3D representations

Neural 3D representations are essentially used to model the scene
dynamics which can then later be leveraged for estimating the pose of
the object. Niemeyer et al. [1] propose the approach of representing
a surface as a neural 3D occupancy field and the texture as a neural
3D texture field in which the ray intersections are computed with
numerical methods. NeRF in the Wild [2] extends NeRF to account for
each image’s individual appearance which in turn helps in high
quality 3D reconstruction of landmarks using unconstrained photo
collections.

Besides the PnP based classical methods that were proposed in the
earlier sections for pose estimation, NeRFs can also be leveraged for
pose estimation of objects in context. On a tangential note,
differentiable mesh renderers [3] have also been explored for pose
estimation prior to the iNeRF approach. Prior work include Chen et
al. [4] approached the category-level pose estimation problem using
single-image reconstruction with a 3D voxel-based feature volume and
then estimating pose iteratively by modelling it as an image
alignment task. Since NeRF models scale reasonably well with dynamic
and large scenes, the same formulation can be leveraged to perform
localization or pose estimation. One potential limiting factor with

this methodology of using NeRFs might be their memory run-time
inference limitations.

iNeRF Formulation

We begin by assuming that we have already modelled the NeRF
representation of a scene and the camera intrinsics are given and we
only need to predict/estimate the pose of the object. One another
limiting assumption of this approach is assuming there is only one
object in the scene for which we’re estimating the object pose - this
is due to the fact that NeRF based pose estimation approaches can’t
handle when multiple (possible overlapping occluding) objects are
present in the same scene. Unlike NeRF, which optimizes using a set
of given camera poses and image observations, we instead solve the
inverse problem of recovering the camera pose T given the weights
and the image I as input:

This equation can be solved by leveraging the NeRF’s ability to
estimate an arbitrary camera pose T and render the corresponding
image observation. Once we have the reconstructed image for a
corresponding pose, we can can then devise a photometric loss
function L (as in NeRFs) and then backpropogate the updated weights
ot pose T to minimize L (instead of to the NeRF model as in the
typical NeRF implementation like in the previous section.

While sampling for rays during the aforementioned reconstruction
approach, sampling of rays to reconstruct and backpropogate pose
estimation values plays a critical role in the convergence of the
algorithm. A naive approach of using random sampling, most of the
sampled pixels provide no gradients for updating the pose of the
object and hence do not contribute to the pose correction step.
Instead, if we choose an interest region sampling as below, where
pixels that fall on the object of interest are chosen, then we
achieve faster convergence and higher accuracy.

Results

The iNeRF model was tested on the LLFF dataset to evaluate the 6 DoF
accuracy on pose estimation. It achieves competitive results when
compared to feature-based methods without having the need for
accessing CAD object mesh models or 2d-to-3D correspondences during
training or testing time.

The above example shows using iNeRF in action, wherein we
reduce the rotation error when starting from 45 degrees down to 0
degrees after running for 800 iterations.

Limitations and future scope

Since, rendering the iNeRF (like NeRF) requires pixel-wise inference,
multiple evaluations of the iNeRF model makes the runtime inference
slow. Using guided sampling around object of interest is one way to
improve on the baseline latency. Another drawback of this method is
that it only supports pose estimation of object currently and cannot
handle occluded objects in the scene, thus further limiting its
usefulness and applicability. These are potential usecases to explore
in the future for increasing the scope of this approach for Pose
estimation.

References

[1] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas
Geiger. Differentiable volumetric rendering: Learning implicit 3d
representations without 3d supervision. CVPR, 2020.

[2] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T
Barron, Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild:
Neural radiance fields for unconstrained photo collections. arXiv
preprint arXiv:2008.02268, 2020.

[3] Andrea Palazzi, Luca Bergamini, Simone Calderara, and Rita
Cucchiara. End-to-end 6-DOF object pose estimation through
differentiable rasterization. ECCV, 2018.

[4] Xu Chen, Zijian Dong, Jie Song, Andreas Geiger, and Otmar
Hilliges. Category level object pose estimation via neural
analysis-by-synthesis. ECCV, 2020.Limitations and future scope

[5] Wang, Zi, Yang Shang, and Hongliang Zhang. "A Survey on
Approaches of Monocular CAD Model-Based 3D Objects Pose Estimation
and Tracking." 2018 IEEE CSAA Guidance, Navigation and Control
Conference (CGNCC). IEEE, 2018.

[6] Peng, Sida, et al. "Pvnet: Pixel-wise voting network for 6dof
pose estimation." Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019.

[7] Aubry, Mathieu, et al. "Seeing 3d chairs: exemplar part-based
2d-3d alignment using a large dataset of cad models." Proceedings of
the IEEE conference on computer vision and pattern recognition. 2014.

[8] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan
T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. arXiv
preprint arXiv:2003.08934, 2020

[9] "Perspective-n-Point." Wikipedia, Wikimedia Foundation, 19 Jul.
2022, en.wikipedia.org/wiki/Perspective-n-Point. Accessed 29 Oct.
2022.

[10] Kitani, Kris. Introduction to Computer Vision (CMU 16-720 B) .
https://kriskitani.github.io/courses/16720B/index.html.

