
CS-154 PROJECT - REPORT
Conway’s Game of Life

 THE START FRAME GOSPER-GLIDER GUN

 PUFFER SQUARE DESIGN

R Nikhil Reddy
170050096

rnr1410@gmaiil.com

Poorvi R Hebbar
170050096

rpoorvihebbar@gmail.com

OBJECTIVE

● The Game of Life is a cellular automaton devised by the British mathematician
John Horton Conway in 1970.

● The evolution of this game depends only on its initial state, Given any initial state
of live and dead cells future state of the cells will be pre decided. thereby making
it more of a simulation than a game.

● Using this concept, we made a simulator with various interesting examples and
options.

RULES
 A Cell with

● Less than 2 neighbours dies due to underpopulation
● More than 3 neighbours dies due to overpopulation
● Equal to 3 neighbours lives in the next generation
● Remains the same otherwise.

PROGRAM STRUCTURE
We just finally made a single rkt file “application.rkt” so that we could set the state
variables in different functions and hence make the overall procedure faster.
The program can be divided into the following parts:

● The GUI part .
● The parsing part - containing code to convert RLE files into good grids.
● The conway processing part .

FEATURES
● Load game: Games can be loaded from a variety number of
● Control Panel: Controlling features like Play/Pause, Fast and Slow Forwarding,

Next State and Jump by any number of generations.
● Grid type: Ability to change grid-type between Closed (Toroidal) and Bounded

Open grids.
● Cell targeted toggle: Clicking on a cell toggles it’s state.
● Cell size: Cell size can be changed in the right panel,.
● Scrolling feautures

SAMPLE INPUTS AND OUTPUTS

● Selected a grid, we can see the simulation of the grid or in other words see how
the grid changes with respect to time following the given rules.

● INPUT : file which contains the information (like the rle) of the corresponding
grid.

● OUTPUT : The simulation or the changing grid with respect to time. (which is
actually very interesting as we can even play with the frame rate and the state of
the grid).

DISCUSSION
● Making functions like grid-apply which basically applies mapping on grid and

using it to calculate the number of neighbours, which made our processing code
run 10-20% faster than before.

● Using the concept of swapping parts of an image instead of drawing the image as
a whole again for the canvas% class in simulator, which made rendering runtime
faster than grid processing.

● Using the canvas’ drawing context to efficiently draw images instead of the
previous bitmap updating, thus decreasing render time.

DESIGN OF THE PROGRAM
The program begins with a start frame , in which the user is expected to select a folder
and a grid that corresponds to the selected folder from the drop down menus that
appear on clicking on the tabs on the frame.2. Once the grid is selected, the simulation
starts when you press the play button, you can also change the grid type that is keep it
bounded or unbounded.3. Also you can change the the simulation and also its rate by
toggling cells, and by changing the rate at which the frame changes.

BASIC INTERFACE
● requires racket/gui
● The racket/gui language combines all bindings of the racket language and the

racket/gui/bas e and racket/draw modules.

LIMITATIONS AND BUGS
1. Jumping frames at a rapid rate or, in other words, moving forward a lot of number

of frames at very fast rate is a bit of a problem as the program tends to freeze if
the fast forward button is pressed multiple number of times.

2. Drawing a completely grid, i.e loading a different game takes time because the
grid is now actually being completely rendered.

3. The case of Infinite open grid , where one can scroll through and see the entire
variartion throughout the space could not be done. Therefore Instead of an infinte
two-dimensional cell, we consider a finite rectangular grid with modifiable
topological properties.

4. The scroll bars are a bit too slow.

CREDITS
Inspired from a conway video seen on youtube, we made a small credits presentation
using the conway code we made, and used ti as our credits at the end of the game.

